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0.0 Preface 1

0.0 Preface

This course draws on the content of the book “Epidemiology with R” [1],
(http://bendixcarstensen.com/EwR), but in particular on the draft of my new book
(which by no means is sure ever to appear as a book) “Practical multistate modeling with
R and Epi:Lexis”. The former is available through Oxford University Press, the latter as a
draft (updated at unpredictable times) as http://bendixcarstensen.com/MSbook.pdf.

e The target audience is the group of statisticians and epidemiologists working in or
with the 5 SDCentres.

e The prerequisites are

1. a basic knowledge of R,

2. a working installation of Epi_2.44

3. a working installation of popEpi_0.4.8
4. some epidemiological practice

e The main groundbreaking etc. feature of the course is that you are supposed to turn
on your brain before you start coding.

e The format of the course will be short lectures closely aligned with the topics in the
exercises. The exercises will be run in chunks between the short lectures.

Exercises are given including most of the solutions. You can get the exercise code chunks
from the course website http://bendixcarstensen.com/AdvCoh/courses/SDC-2021


http://bendixcarstensen.com/EwR
http://bendixcarstensen.com/MSbook.pdf
http://bendixcarstensen.com/AdvCoh/courses/SDC-2021

Chapter 1

Practicals

1.1 Swurvival and rates: lung
e lung data from survival package
e KM estimator
e Cox model with effect of sex and age (at entry)
e Lexis object, simple
e Timesplit by splitLexis / splitMulti
e glm with Ns - same result as Cox
e Baseline hazard using predict, survival using ci.surv

e Survival functions from smooth and KM models compared

1.1.1 Paraphernalia
It is advisable to load all packages needed at the start:

library(survival)

library (Epi)

library(popEpi)

# popEpi::splitMulti returns a data.frame rather than a data.table
options ("popEpi.datatable" = FALSE)

vV VVvVvyVv

1.1.2 Data

1. Load the lung data from the survival package, and convert sex to a factor (always
do that with categorical variables). Also we rescale time from days to months:



Practicals 1.1 Survival and rates: lung 3

> data(lung)

> lung$sex <- factor(lung$sex, labels = c("M", "W"))
> lung$time <- lung$time / (365.25/12)

> head (lung)

inst time status age sex ph.ecog ph.karno pat.karno meal.cal wt.loss
1 3 10.053388 2 74 M 1 90 100 1175 NA
2 3 14.948665 2 68 M 0 90 90 1225 15
3 3 33.182752 1 56 M 0 90 90 NA 15
4 5 6.899384 2 57 M 1 90 60 1150 11
5 1 29.010267 2 60 M 0 100 90 NA 0
6 12 33.577002 1 74 M 1 50 80 513 0

2. Use survfit to construct the Kaplan-Meier estimator of overall survival:

> ?Surv

> ?7survfit

> km <- survfit(Surv(time, status == 2) ~ 1, data = lung)
> km

Call: survfit(formula = Surv(time, status == 2) ~ 1, data = lung)

n events median 0.95LCL 0.95UCL
228.00 165.00 10.18 9.36 11.93

> # summary(km) # very long output

The standard print method just prints the number of events and the median survival,
while the summary prints the entire survival function estimate.

We can plot the survival curve—this is the default plot for a survfit object:

> plot (km)

What is the median survival? What does it mean?

3. Explore if survival patterns between men and women are different:

> kms <- survfit(Surv(time, status == 2) ~ sex, data = lung)
> kms
Call: survfit(formula = Surv(time, status == 2) ~ sex, data = lung)

n events median 0.95LCL 0.95UCL
sex=M 138 112 8.87 6.97 10.2
sex=W 90 53 14.00 11.43 18.1

We can plot the two resulting survival curves with confidence limits:

> plot (kms)
> plot(kms, col
> lines(kms, col = c("blue", "red"), lwd

c("blue", "red"), 1lwd = 1, conf.int = TRUE)
3)
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We see that men have worse survival than women, but they are also a bit older (age
is age at diagnosis of lung cancer):

> with(lung, tapply(age, sex, mean))

M W
63.34058 61.07778

Formally there is a significant difference in survival between men and women

> 7survdiff
> survdiff (Surv(time, status==2) ~ sex, data = lung)

Call:

survdiff (formula = Surv(time, status == 2) ~ sex, data = lung)
N Observed Expected (0-E)~2/E (0-E)~2/V

sex=M 138 112 91.6 4.55 10.3

sex=W 90 53 73.4 5.68 10.3

Chisgq= 10.3 on 1 degrees of freedom, p= 0.001

What is the null hypothesis tested here?

4. Now explore how sex and age (at diagnosis) influence the mortality—note that we are
now addressing the mortality rate and not the survival in a Cox-model:

> c0 <- coxph(Surv(time, status == 2) ~ sex , data = lung)
> c1 <- coxph(Surv(time, status == 2) ~ sex + age, data = lung)
> summary(c1)

Call:

coxph(formula = Surv(time, status == 2) ~ sex + age, data = lung)

n= 228, number of events= 165

coef exp(coef) se(coef) z Pr(>|zl|)
sexW -0.513219 0.598566 0.167458 -3.065 0.00218
age 0.017045 1.017191 0.009223 1.848 0.06459

exp(coef) exp(-coef) lower .95 upper .95
sexW 0.5986 1.6707 0.4311 0.8311
age 1.0172 0.9831 0.9990 1.0357

Concordance= 0.603 (se = 0.025 )

Likelihood ratio test= 14.12 on 2 df, p=9e-04
Wald test = 13.47 on 2 df, p=0.001
Score (logrank) test = 13.72 on 2 df, p=0.001

> ci.exp(c0)

exp(Est.) 2.5% 97.5%
sexW 0.5880028 0.4237178 0.8159848
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> ci.exp(cl)

exp(Est.) 2.5% 97.5%
sexW 0.598566 0.4310936 0.8310985
age 1.017191 0.9989686 1.0357467

We see that there is not much confounding by age; the W/M mortality RR (hazard
ratio is another word for this) is slightly below 0.6 whether age is included or not.

The age effect is formally non-significant, the estimate corresponds to a mortality RR
of 1.7% per year of age at diagnosis.

What is the mortality RR for a 10 year age difference?

5. We can check if the assumption of proportional hazards holds, cox.zph provides a
test, and the plot method shows the Schoenfeld residuals and a smooth of them;
interpretable as an estimate of the interaction effect; that is how the W/M (log)
rate-ratio depends on time:

> 7cox.zph
> cox.zph(c0)

chisq df p
sex 2.86 1 0.091
GLOBAL 2.86 1 0.091

> (z1 <- cox.zph(c1))

chisq df P
sex 2.608 1 0.11
age 0.209 1 0.65
GLOBAL 2.771 2 0.25

> par(mfrow = c(1, 2)) ; plot(zl)

6. But we do not know how the mortality per se looks as a function of time (since
diagnosis). That function is not available from the Cox-model or from the survfit
object. To that end we must provide a model for the effect of time on mortality; the
simplest is of course to assume that it is constant or a simple linear function of time.

If we assume the mortality is constant over time, it is so that the likelihood for the
model is equivalent to a Poisson likelihood, which can be fitted using the poisreg
family from the Epi package:

> 7poisreg

> pl <- glm(cbind(status == 2, time) ~ sex + age,
+ family = poisreg,

+ data = lung)

> ci.exp(pl)

exp(Est.) 2.5% 97.5%
(Intercept) 0.03255152 0.01029228 0.1029511
sexW 0.61820515 0.44555636 0.8577537
age 1.01574132 0.99777446 1.0340317
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> ci.exp(cl)

exp(Est.) 2.5% 97.5%
sexW 0.598566 0.4310936 0.8310985
age 1.017191 0.9989686 1.0357467

We see that the estimates of sex and age effects are quite close between the Poisson
and the Cox models, but also that the Poisson model has an intercept term, the
estimate of the (assumed) constant underlying mortality. Since we entered the risk
time part of the response (second argument in the cbind) in units of months
(remember we rescaled in the beginning?), the (Intercept) is a rate per 1
person-month.

What age and sex does the (Intercept) refer to?

The syntax for poisreg is a bit different from that for poisson, which would be:

> px <- glm(status == ~ sex + age,

+ offset = log(time),

+ family = poisson,

+ data = lung)

> px <- glm(status == 2 ~ sex + age + offset(log(time)),

+ family = poisson,

+ data = lung)

> ci.exp(px)

This is the reason that papers use the description ”. .. we fitted a Poisson model with

log person years as offset”. The drawback of the poisson approach is that you need
the time (person-years) variable in the prediction frame, that is not the case for
poisreg

1.1.3 Lexis object

If we want to see how mortality varies by age we must split the follow-up of each person in
small intervals of say, 30 days. This is most easily done using a Lexis object. That is
basically just taking the lung dataset and adding a few features that defines times and
states. The point is that it makes life a lot easier when things get more complex than just
simple survival.

7. First make a Lexis object:

> ?Lexis
> L1 <- Lexis(exit = list(tfl = time),

+ exit.status = factor(status,

+ levels = 1:2,

+ labels = c("Alive", "Dead")),
+ data = lung)

NOTE: entry.status has been set to "Alive" for all.
NOTE: entry is assumed to be O on the tfl timescale.
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> head(L1)
tfl lex.dur lex.Cst lex.Xst lex.id inst time status age sex ph.ecog ph.karno
1 0 10.053388 Alive Dead 1 3 10.0563388 2 74 M 1 90
2 0 14.948665 Alive Dead 2 3 14.948665 2 68 M 0 90
3 0 33.182752 Alive Alive 3 3 33.182752 1 66 M 0 90
4 0 6.899384 Alive Dead 4 5 6.899384 2 57 M 1 90
5 0 29.010267 Alive Dead 5 1 29.010267 2 60 M 0 100
6 0 33.577002 Alive Alive 6 12 33.577002 1 74 M 1 50
pat.karno meal.cal wt.loss
1 100 1175 NA
2 90 1225 15
3 90 NA 15
4 60 1150 11
5 90 NA 0
6 80 513 0

We see that 5 variables have been added to the dataset:

tfl: time from lung cancer at the time of entry, therefore it is 0 for all persons; the
entry time is 0 from the entry time.

lex.dur: the length of time a person is in state lex.Cst, here measured in months,
because time is.

lex.Cst: Current state, the state in which the lex.dur time is spent.

lex.Xst: eXit state, the state to which the person moves after the lex.dur time in

lex.Cst.
lex.id: a numerical id of each record in the dataset (normally this wll be a person
id).

This seems a bit of an overkill for keeping track of time and death for the lung cancer
patients, but the point is that this generalizes to multistate data too.

It also gives a handy overview of the follow-up:

> summary(L1)

Transitions:
To
From Alive Dead Records: Events: Risk time: Persons:
Alive 63 165 228 165 2286.42 228

What is the average follow-up time for persons?

For a graphical representation, try:

> 7boxes
> boxes (L1, boxpos = TRUE)

Explain the numbers in the resulting graph. Redo the graph with risk time counted
in years.
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8. We can make the Cox-analysis using the Lexis-specific variables by:

> ?Surv

> ¢l <- coxph(Surv(tfl,

+ tfl + lex.dur,

+ lex.Xst == "Dead") ~ sex + age,
+ data = L1)

but even simpler, by using the Lexis features:

> 7coxph.Lexis
> cL <- coxph.Lexis(Ll, tfl ~ sex + age)

survival::coxph analysis of Lexis object Ll:
Rates for the transition Alive->Dead
Baseline timescale: tfl

> ci.exp(cL)

exp(Est.) 2.5% 97.5%
sexW 0.598566 0.4310936 0.8310985
age 1.017191 0.9989686 1.0357467

> ci.exp(cl)

exp(Est.) 2.5% 97.5%
sexW 0.598566 0.4310936 0.8310985
age 1.017191 0.9989686 1.0357467

. And we can make the Poisson-analysis by:

> pc <- glm(cbind(lex.Xst == "Dead", lex.dur) ~ sex + age,
+ family = poisreg,
+ data = L1)

or even simpler, by using the Lexis features:

> pL <- glm.Lexis(L1, ~ sex + age)

stats::glm Poisson analysis of Lexis object L1 with log link:

Rates for the transition: Alive->Dead

> ci.exp(pL)

exp(Est.) 2.5% 97.5%
(Intercept) 0.03255152 0.01029228 0.1029511
sexW 0.61820515 0.44555636 0.8577537
age 1.01574132 0.99777446 1.0340317
> ci.exp(pc)

exp(Est.) 2.5% 97.5%
(Intercept) 0.03255152 0.01029228 0.1029511
sexW 0.61820515 0.44555636 0.8577537
age 1.01574132 0.99777446 1.0340317

Remember that the Poisson-model fitted is a very brutal approximation to the

Cox-model; it assumes that the baseline hazard is constant, whereas the Cox-model

allows the baseline hazard to vary arbitrarily by time.
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1.1.4 Splitting time

If we want a more detailed version of the baseline hazard we split follow-up time in small
intervals, assume that the hazard is constant in each small interval, and assume the the
size of the hazard varies smoothly with time, tf1:

10. We can subdivide the follow-up in small intervals by survival:::survSplit,
Epi:::splitLexis or popEpi:::splitMulti (and possibly many more). The
splitMulti is by far the easiest to use (and fastest as well). Recall we rescaled time

to months, so we split in 1 month intervals:

> 81 <- splitMulti(Ll, tfl = 0:36)

This will split the follow-up along the time-scale tf1 at times 0, 1, ..., 36 months; we
see that the follow-up time is the same, but there are now about 10 times as many
records:

> summary(L1)

Transitions:
To
From Alive Dead Records: Events: Risk time: Persons:
Alive 63 165 228 165 2286.42 228

> summary (S1)

Transitions:
To
From Alive Dead Records: Events: Risk time: Persons:
Alive 2234 165 2399 165 2286.42 228

We can see how the follow up for person, 10 say, is in the original and the split
dataset:

> wh <- names(L1)[1:10] # names of variables in some order
> subset (L1, lex.id == 10)[,wh]

tfl lex.dur lex.Cst lex.Xst lex.id inst time status age sex
10 0 5.453799  Alive Dead 10 7 5.453799 2 61 M

> subset(S1, lex.id == 10)[,wh]

tfl lex.dur lex.Cst lex.Xst lex.id inst time status age sex
163 0 1.0000000  Alive  Alive 10 7 5.453799 2 61 M
164 1 1.0000000 Alive  Alive 10 7 5.453799 2 61 M
1656 2 1.0000000 Alive  Alive 10 7 5.453799 2 61 M
166 3 1.0000000 Alive  Alive 10 7 5.453799 2 61 M
167 4 1.0000000 Alive Alive 10 7 5.453799 2 61 M
168 5 0.4537988  Alive Dead 10 7 5.453799 2 61 M

In S1 each record now represents a small interval of follow-up for a person, so each
person has many records. The main thing to note here is tf1, which represents the
time from lung cancer at the beginning of each interval, and lex.dur representing

the risk time (“person-years”; in months though).
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11. We can now include a smooth effect of tf1 in the Poisson-model allowing the baseline
hazard to vary by time. That is done by natural splines, Ns:

12.

> ps <- glm(cbind(lex.Xst == "Dead", lex.dur)
+ ~ Ns(tfl, knots = seq(0, 36, 12)) + sex + age,
+ family = poisreg,
+ data = S1)
> ci.exp(ps)

exp(Est.) 2.5% 97.5%
(Intercept) 0.0189837 0.005700814 0.06321569
Ns(tfl, knots = seq(0, 36, 12))1 2.4038681 0.809442081 7.13896863
Ns(tfl, knots = seq(0, 36, 12))2 4.1500822 0.436273089 39.47798357
Ns(tfl, knots = seq(0, 36, 12))3 0.8398973 0.043928614 16.05849662
sexW 0.5987171 0.431232662 0.83124998
age 1.0165872 0.998377104 1.03512945

or even simpler:

> 7glm.Lexis
> ps <- glm.Lexis(S1, ~ Ns(tfl, knots =

seq(0, 36, 12)) + sex + age)

stats::glm Poisson analysis of Lexis object S1 with log link:

Rates for the transition: Alive->Dead

> ci.exp(ps)

exp(Est.)
(Intercept) 0.0189837
Ns(tfl, knots = seq(0, 36, 12))1 2.4038681
Ns(tfl, knots = seq(0, 36, 12))2 4.1500822
Ns(tfl, knots = seq(0, 36, 12))3 0.8398973
sexW 0.5987171
age 1.0165872

Compare these to the regression estimates from the Cox-model and from the model

with constant baseline:

> round(cbind(ci.exp(cl),

[ecNoNoNoNoNe]

2.5%

.005700814
.809442081
.436273089
.043928614
.431232662
.998377104

+ ci.exp(ps, subset = c("sex","age")),

+ ci.exp(pc, subset = c("sex","age"))), 3)
exp(Est.) 2.5% 97.5% exp(Est.)

sexW 0.599 0.431 0.831 0.599 0.431 0.831

age 1.017 0.999 1.036 1.017 0.998 1.035

We see that the smooth parametric Poisson model and the Cox model produce
virtually the same estimates, whereas the Poisson model with constant hazard

produce slightly different ones.

The same again:

2.5% 97.5% exp(Est.)

97.5%

.06321569
.13896863
.47798357
.05849662
.83124998
.03512945

2.5% 97.5%
0.618 0.446 0.858
1.016 0.998 1.034
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13.

14.

> round(cbind(ci.exp(cl),ci.exp(ps,subset=c("sex","age")),ci.exp(pc,
+ subset=c("sex","age"))), 3)

exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5%
sexW 0.599 0.431 0.831 0.599 0.431 0.831 0.618 0.446 0.858
age 1.017 0.999 1.036 1.017 0.998 1.035 1.016 0.998 1.034

What is wrong with that, it gives the same result?

We now have a parametric model for the baseline hazard which means that we can
show how the estimates baseline hazard for a 60-year old woman, by supplying a
prediction frame, i.e. a data frame where each row represents a set of covariate values
where we want the predicted mortality:

> prf <- data.frame(tfl
+ sex
+ age

seq(0, 30, 0.2),
”w" ,
60)

We can overplot with the predicted rates from the model where mortality rates are
constant, the only change is the model (pc instead of ps):

> matshade (prf$tfl, ci.pred(ps, prf),
+ plot = TRUE, log = "y", lwd = 3)
> matshade (prf$tfl, ci.pred(pc, prf), lty = 3, lwd = 3)

What we see from the plot is that mortality rates are increasing during the first 1.5
years after lung cancer and then leveling off.

Put some sensible axis labels on the plot, and rescale the rates to rates per 1
person-year.

We can transform the hazard function A(t), to a survival function, S(t) using the
relationship S(t) = exp(— fo . This is implemented in the ci.surv function,
which takes the model and a predlctlon data frame as arguments; the prediction data
frame must correspond to a sequence of equidistant time points, so we can use prf
for this purpose:

> matshade (prf$tfl, ci.surv(ps, prf, intl = 0.2),
+ plot = TRUE, ylim = 0:1, lwd = 3)

We can expand this by overlaying the survival function from the model with constant
hazard (also known as “exponential(y distributed) survival”) and the KM-estimator

> matshade (prf$tfl, ci.surv(ps, prf, intl = 0.2),

+ plot = TRUE, ylim = 0:1, lwd = 3)

> lines(prf$tfl, ci.surv(pc, prf, intl = 0.2)[,1])

> lines(survfit(cl, newdata = data.frame(sex = "W", age = 60)),
+ lwd = 2, 1ty = 1)
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We see that the survival function from the constant hazard model is quite a bit off,
but also a good correspondence between the Cox-model based survival and the
survival from the parametric hazard function.

We can bring the plots together in one graph:

> par(mfrow = c(1,2))

> # hazard scale

> matshade (prf$tfl, ci.pred(ps, prf),

+ plot = TRUE, log = "y", lwd = 3)

> matshade (prf$tfl, ci.pred(pc, prf), 1ty = 3, lwd = 3)
> # survival

> matshade (prf$tfl, ci.surv(ps, prf, intl = 0.2),

+ plot = TRUE, ylim = 0:1, lwd = 3)

> matshade (prf$tfl, ci.surv(pc, prf, intl = 0.2),

+ 1ty = 3, alpha = 0, 1wd = 3)

> lines(survfit(cl, newdata = data.frame(sex = "W", age = 60)),
+ col = "forestgreen", lwd = 3)

0.20
0.10
>
0.05
0.02
0.0-
[ T T T T T 1 [ T T T T T 1
0 5 10 15 20 25 30 0 5 10 15 20 25 30
X X

Figure 1.1: Hazards (left) and survival (right) for 60 year old women. The left hand plot is
unavailable from the Cox model.

../graph/surv-ratesurv

15. We have compared the predicted a survival curve from a Poisson model with time
since lung cancer, age and sex to that from a Cox-model with age and sex and time
since lung cancer as underlying time scale.
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We now go back to the Kaplan-Meier estimator and compare that to the
corresponding Poisson-model, which is one with time (tf1) as the only covariate:

> par(mfrow=c(1,2))
> pk <- glm(cbind(lex.Xst == "Dead",
+ lex.dur) ~ Ns(tfl, knots = seq(0, 36, 12)),
+ family = poisreg,
+ data = S1)
> # hazard
> matshade (prf$tfl, ci.pred(pk, prf),
+ plot = TRUE, log = "y", lwd = 3, ylim = c¢(0.01,1))
> # survival from smooth model
> matshade (prf$tfl, ci.surv(pk, prf, intl = 0.2) ,
+ plot = TRUE, lwd = 3, ylim = 0:1)
> # K-M estimator
> lines(km, lwd = 2)
1.00
0.50—
0.20—
>0.10 >
0.05—
0.02—
0.01-
T T T T T T ] T T T T T T ]
0 5 10 15 20 25 30 0 5 10 15 20 25 30

X X

Figure 1.2: Baseline hazard (left), and corresponding survival function from parametric model
and Kaplan-Meier estimator.

. ./graph/surv-parkm

16. We can explore how the tightness of the knots in the smooth model influence the
underlying hazard and the resulting survival function:

> zz <-
+ function(dk)
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+ {
+ par (mfrow=c(1,2))
+ kn <- seq(0, 36, dk)
+ pk <- glm(cbind(lex.Xst == "Dead",
+ lex.dur) ~ Ns(tfl, knots = kn),
+ family = poisreg,
+ data = S1)
+ matshade (prf$tfl, ci.pred(pk, prf),
+ plot = TRUE, log = "y", lwd = 3, ylim = ¢(0.01,1))
+ rug(kn, lwd=3)
+
+ matshade (prf$tfl, ci.surv(pk, prf, intl = 0.2) ,
+ plot = TRUE, lwd = 3, ylim = 0:1)
+ lines(km, lwd = 2)
+ }
> zz(12)
> zz(2)
1.00
0.50—
0.20—
>0.10 >
0.05—
0.02+
o'Ol_IIIIIIIIIIIIII
! T ! T ! T | T T T T T |
0 5 10 15 20 25 30 0 5 10 15 20 25 30
X X

Figure 1.3: Hazard (left) and survival (right) comparing a parametric model with knots every
2 months and the Kaplan-Meier estimator.

. ./graph/surv-knots2
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You will see that the more knots you include, the closer the parametric estimate gets

to the Kaplan-Meier estimator. But also that the estimated underlying hazard
becomes increasingly silly.

The ultimate silliness is of course achieved when we arrive at the Kaplan-Meier
estimator, so the absence of the underlying hazard is most convenient.
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1.2 Competing risks: DMlate
1. Competing risks: dodth, doins, dooad
2. Lexis object to dodth, dox
3. mcutLexis for the two competing risks
4. Aalen-Johansen estimator via survfit
5. Parametric rates
6. Cumulative risks from parametric rates

7. Cumulative risks fro survival: :survfit - Aalen-Johansen estimator.

1.2.1 Paraphernalia
It is advisable to load all packages needed at the start:

library(survival)

library(Epi)

library(popEpi)

# popEpi::splitMulti returns a data.frame rather than a data.table
options ("popEpi.datatable" = FALSE)

library(tidyverse)

V VVVVvVyVv

1.2.2 Data

This exercise follows quite closely the section on competing risks in “Epidemiology with R”,
pp. 207 and 210 ff. With the major exception that we will use the function ci.Crisk,
which was not available in the Epi package when the book was written.

We shall use the DMlate dataset which is a random sample of Danish diabetes patients,
with dates of birth, diabetes, OAD start, insulin start and death.

We want to look at the event “start of OAD”, which occurs at dooad, while taking death
as competing event into account. This means that we want to address the question of the
probability of starting OAD, while taking death into account. Essentially estimating the
probability of being in each of the states DM, OAD and Dead, where OAD means “started OAD
and either alive or dead after this” and Dead means “dead without starting OAD”.

1. Load the DMlate data from the Epi package, and for ease of calculation restrict to a
random sample of 2000 persons:

data(DMlate)

# str(DMlate)

set.seed(1952)

DMlate <- DMlate[sample(1:nrow(DMlate), 2000),]
str(DMlate)

V VvVVVvyVv
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'data.frame': 2000 obs. of 7 variables:

sex : Factor w/ 2 levels "M","F": 2121111111 ...
dobth: num 1964 1944 1957 1952 1952 ...

dodm : num 2003 2006 2008 2007 2003 ...

dodth: num NA NA NA NA NA NA NA NA NA NA ...

dooad: num NA 2006 NA 2007 2006 ...

doins: num NA NA NA 2008 NA ...

dox : num 2010 2010 2010 2010 2010 ...

HF P P PP HBH

> head(DMlate)

sex dobth dodm dodth dooad doins dox
70126 F 1963.591 2003.481 NA NA NA 2009.997
235221 M 1944.127 2005.644 NA 2005.778 NA 2009.997
230872 F 1956.790 2007 .886 NA NA NA 2009.997
138167 M 1952.355 2006.969 NA 2006.969 2008.026 2009.997
406109 M 1952.240 2003.361 NA 2005.852 NA 2009.997
72438 M 1978.758 2001.948 NA NA 2001.967 2009.997

2. Define a Lexis object with the total follow up for each person:

> Ldm <- Lexis(entry = list(per = dodm,
age = dodm - dobth,
tfd = 0),
exit = list(per = dox),
exit.status = factor(!is.na(dodth),
labels = c("DM", "Dead")),
DMlate)

+ + + + + +

data

NOTE: entry.status has been set to "DM" for all.
NOTE: Dropping 1 rows with duration of follow up < tol

> summary (Ldm)

Transitions:
To
From DM Dead Records: Events: Risk time: Persons:
DM 1521 478 1999 478 10742.34 1999

Then subdivide the follow-up at the date of OAD, using dooad:

> Cdm <- cutLexis(Ldm,

+ cut = Ldm$dooad,

+ timescale = "per",

+ new.state = "OAD")

> summary (Cdm)

Transitions:

To

From DM OAD Dead Records: Events: Risk time: Persons:
DM 685 634 226 1545 860 5414 .29 1545
0AD 0 836 252 1088 252 5328.05 1088

Sum 685 1470 478 2633 1112 10742.34 1999
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In this context we are not interested in what goes on after OAD so we only keep
follow-up in state DM (note that we must use subset because filter does not have a
method for Lexis objects):

> Adm <- subset(Cdm, lex.Cst == "DM")
> summary (Adm)
Transitions:
To
From DM OAD Dead Records: Events: Risk time: Persons:
DM 685 634 226 1545 860 5414 .29 1545

> boxes(Adm, boxpos = TRUE, scale.R = 100, show.BE = TRUE)

DM
5,414.3
1,545 685 634
(11.7)
226
(4.2) OAD

0 634

Dead
0 226

Figure 1.4: Competing risks set-up for events OAD and Dead.
../graph/cmpr-boxCR

As shown in figure 1.4 we now have a traditional competing risks set-up, with some
1500 DM patients starting without OAD, and where the quantity of interest is the
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probability of starting drug treatment, and the 0AD state here means “having been on
pharmaceutical treatment, disregarding subsequent death”. The other event
considered is Dead which here means “dead without initiating pharmaceutical
treatment”.

3. We can compute the (correct) counterpart of the survival function for this competing
risks setup. The survival function gives the probability of being alive, and the
complement is the probability of being dead, so the probabilities of being in each of
the Alive/Dead states.

survfit can do the corresponding calculation for the three states in the figure; the
requirements are: 1) the third argument to the Surv function is a factor and 2) an id
argument is given, pointing to an id variable that links together records belonging to
the same person. The latter is superfluous in this case because there is only one
record for each person, but even it is required by the function

> levels(Adm$lex.Xst)

[1] AL nOADu "Dead“
> m3 <- survfit(Surv(tfd,
+ tfd + lex.dur,
+ lex.Xst) ~ 1,
+ data = Adm,
+ id = lex.id)
> names (m3)
[1] "n" "time" "n.risk" "n.event" "n.censor" "pstate"
(7] "po" "cumhaz" "std.err" "sp0" "logse" "transition
[13] "conf.int" "conf.type" "lower" "upper" "conf.type" "conf.int"
[19] "states" "type" "call"
> m3$states
[1] "(SO)" "OQAD" "Dead"
> head(cbind(time = m3$time, m3$pstate))
time
[1,] 0.002737851 0.9987055 0.001294498 0.0000000000
[2,] 0.005475702 0.9928803 0.006472492 0.0006472492
[3,] 0.008213552 0.9889968 0.009061489 0.0019417476
[4,] 0.010951403 0.9877023 0.009708738 0.0025889968
[5,] 0.013689254 0.9838188 0.013592233 0.0025889968
[6,] 0.016427105 0.9805825 0.016828479 0.0025889968

Because lex.Xst is a factor, survfit will compute the Aalen-Johansen estimator of
being in a given state and place the probabilities in the matrix m3$pstate; the times
these refer to are in the vector m3$time. These are measured in years since diabetes,

because tfd is in units of years,

Explore the object m3; start by using names (m3).
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4. The m3$pstate contains the Aalen-Johansen probabilities of being in the Alive,
having left to the 0AD, resp. Dead state.

Plot the three curves in the same graph (use for example matplot). Add the
confidence limits.

5. These three curves have sum 1, so basically this is a way of distributing the
probabilities across states at each time. It is therefore natural to stack the
probabilities, which can be done by stackedCIF:
> par( mfrow=c(1,2) )
> matplot(m3$time, m3$pstate,

+ type="s", 1lty=1, lwd=4,
+ col=c("ForestGreen", "red", "black"),
+ x1im=c(0,15), xaxs="i",
+ ylim=c(0,1), yaxs="i" )
> stackedCIF(m3, lwd=3, xlim=c(0,15), xaxs="i", yaxs="i" )
> text( rep(12,3), ¢c(0.9,0.3,0.6), levels(Cdm) )
> box()
1.0 1.0
DM
0.8 0.8
3
0.6 & 0.6 Dead
g 3
o £
£ E
0.4- E 0.4
O
OAD

0.2 0.2

0.0 T T | T | | | 0.0 T T T T T T T
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14

m3$time Time

Figure 1.5: Separate state probabilities (left) and stacked state probabilities (right). In the
left panel, Alive s green, OAD is red and Dead s black. ../graph/cmpr-surv2

6.

What do you get if you replace “~ 1”7 by “~ sex” in the call to survfit?
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1.2.3 What not to do

A very common error is to use a partial outcome such as 0AD, when there is a competing
type of event, in this case Dead. If that is ignored and a traditional survival analysis is
made as if 0AD were the only possible event, we will have a substantial overestimate of the
cumulative probability of going on drug. Here is an illustration of this erroneous approach:

lines(m2$time, 1 - m2$surv, lwd = 3, col = "red" )
mat2pol (m3$pstate, c(3,2,1), x = m3$time, yaxs = "i",
col = c("black","red", "transparent"),
x1im=c(0,15), xaxs="i",
yaxs = "i", xlab = "time since DM", ylab = "" )
lines(M2$time, 1 - M2$surv, lwd = 3, col = "black" )

> m2 <- survfit( Surv(tfd,

+ tfd + lex.dur,

+ lex.Xst == "OAD" ) ~ 1, data = Adm)
> M2 <- survfit( Surv(tfd,

+ tfd + lex.dur,

+ lex.Xst == "Dead") ~ 1, data = Adm)
> par( mfrow=c(1,2) )

> mat2pol (m3$pstate, c(2,3,1), x = m3$time,

+ col = c("red", "black", "transparent"),

+ x1im=c(0,15), xaxs="i",

+ yaxs = "i", xlab = "time since DM", ylab = "" )
>

>

+

+

+

>

The first two statements calculate the survival as if only 0AD, respectively Dead were the
only way of exiting the state Alive. The mat2pol (matrix to polygon) takes the columns
of state probabilities from the survfit object m3 that contains the correctly modeled
probabilities and plot them as coloured areas stacked; the second argument to mat2pol is
the order in which they should be stacked. The lines plot the wrongly computed
cumulative risks (from m2 and M2) — in order to find these we fish out the surv component
from the survfit objects.

1.3 Modeling cause specific rates

There is nothing wrong with modeling the cause-specific event-rates, the problem lies in
how you transform them into probabilities. The relevant model for a competing risks
situation normally consists of separate models for each of the cause-specific rates. Not for
technical or statistical reasons, but for substantial reasons; it is unlikely that rates of
different types of event (OAD initiation and death, say) depend on time in the same way.

7. Now model the two sets of rates by parametric models; this must be based on a
time-split data set — choose whether you want to use the gam or the glm approach:

> Sdm <- splitMulti(Adm, tfd = seq(0,20,0.1) )
> summary (Adm)

Transitions:
To
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1.0 1.0

0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
time since DM time since DM

Figure 1.6: Stacked state probabilities Alive is white, OAD is red and Dead is black. The red
line in the left panel is the wrong (but often computed) “cumulative risk” of OAD, and the
black line in the right panel is the wrong (but often computed) “cumulative risk” of Death.
The black and the red areas in the two plots represent the correctly computed probabilities;
they have the same size in both panels, only they are stacked differently. . ./graph/cmpr-surv3

From DM OAD Dead Records: Events: Risk time: Persons:
DM 685 634 226 1545 860 5414 .29 1545

> summary (Sdm)

Transitions:
To
From DM OAD Dead Records: Events: Risk time: Persons:
DM 54064 634 226 54924 860 5414.29 1545

> gla <- gam.Lexis(Sdm, ~ s(tfd, k = 5), from = "DM", to = "OAD" )

mgcv::gam Poisson analysis of Lexis object Sdm with log link:
Rates for the transition: DM->0AD

> gma <- gam.Lexis(Sdm, ~ s(tfd, k = 5), from = "DM", to = "Dead" )

mgcv::gam Poisson analysis of Lexis object Sdm with log link:
Rates for the transition: DM->Dead
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8. As an alternative to the gam model that uses penalized splines, we can use natural
splines in a non-penalized model using glm. The glm requires a set of pre-specified
knots for the time variable, where the specification should be (partially) guided by
the location on the times of the events:

> round (cbind(
+ with(subset (Sdm, lex.Xst == "OAD" ), quantile(tfd + lex.dur, 0:10/10)),
+ with(subset (Sdm, lex.Xst == "Dead"), quantile(tfd + lex.dur, 0:10/10))),
+ 3)
[,1] [,2]
0% 0.003 0.005
10% 0.038 0.129
20% 0.095 0.507
30% 0.142 1.083
40% 0.239 1.730
50% 0.534 2.552
60% 1.268 3.584
70%  2.199 4.490
80% 3.373 6.196
90% 5.213 8.471
100% 14.311 11.858

We see that the 0AD occur earlier than Dead, so we choose the knots a bit earlier:

> okn <- ¢(0,0.5,3,6)
> dkn <- ¢(0,2.0,5,9)

> gll <- glm.Lexis(Sdm, ~ Ns(tfd, knots = okn), from = "DM", to = "OAD" )
stats::glm Poisson analysis of Lexis object Sdm with log link:

Rates for the transition: DM->0AD

> gml <- glm.Lexis(Sdm, ~ Ns(tfd, knots = dkn), from = "DM", to = "Dead")

stats::glm Poisson analysis of Lexis object Sdm with log link:
Rates for the transition: DM->Dead

9. With models for the two rates out of the DM state we can derive the estimated rates
from the two models for rates by time by using a prediction frame, nd:

int <- 0.01

nd <- data.frame(tfd = seq(0, 15, int))
lama <- ci.pred(gla, nd)

mrta <- ci.pred(gma, nd)

laml <- ci.pred(gll, nd)

mrtl <- ci.pred(gml, nd)

vV VVVYVvVYyV

Now plot the estimated rates, in this case the gam models with dotted and glm
models with full lines; mortality with black and OAD rates with red:

> matshade (nd$tfd,

+ cbind(lama, mrta, laml, mrtl) * 100,

+ plot = TRUE,

+ log = "y", ylim = c(2, 20),

+ col = rep(c("red", "black"), 2),

+ 1ty = rep(c("21","so0lid"), each = 2), 1lwd = 3, lend = "butt")
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20

10+

Figure 1.7: Mortality rates (black) and OAD-rate (red), from glm model with natural splines
(full lines) and gam models with penalized splines (dotted lines).
. ./graph/cmpr-0AD-mort

1.3.1 Integrals with R

Based on these parametric models we can estimate the cumulative risks of being in each of
the states, but also the expected time time spent in each state. The theory of these
involves calculation of integrals of the rate functions. Integrals looks scary to many people,
but they are really just areas under curves.

The key is to understand how a curve is represented in R. A curve representing the
function p is just a set of a vector ts and a vector y = u(t)s. When we have a model such
as gml above that estimates the mortality as a function of time (tfd), we can get a
representation of this by first choosing the timepoints, say from 0 to 15 years in steps of
0.01 year (= 4 days), and put this in a dataframe with the variable name from the model::

> t <- seq(0, 15, 0.01)

> prfrm <- data.frame(tfd = t)
> mu <- ci.pred(gml, prfrm)[,1]
> head(cbind(t, mu))

t mu
0 0.06919036
1 0.06885302
2 0.06851733
3 0.06818330
4 0.06785093
5 0.06752022
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This is a representaion of the points (¢, u(t)); if we want the integral of mu over the interval
0, 5], say, M(5) = f05 p(s) ds, we just need the area under the curve. Each ¢ represents an
endpoint of an interval, what we want in order to compute the area under the curve is the
width of each interval, diff (t), multiplied by the average of the function values at the
ends of each interval. (This goes under the name of the "trapezoidal formula”). So we need
a small function to compute midpoints between successive values in a vector:

> mid <- function(x) x[-1] - diff(x) / 2
> mid(c(1:5,7,10))

[1] 1.5 2.5 3.5 4.5 6.0 8.5

Note that mid (x) is a vector that is 1 shorter than the vector x, just as diff (x) is.
So if we want the integral over the period 0 to 5 years, we want the sum over the first
500 intervals, corresponding to teh first 501 interval endpoints:

> sum(diff(t[1:501]) * mid(mu[1:501]))
[1] 0.1896222

So now we have computed f05 w(s)d(s).
In pratice we will want the integral function of u, so for every t we want
M(t) = fg p(s)d(s). This is easily accomplished by the function cumsum:

> Mu <- ¢(0, cumsum(diff(t) * mid(mu)))
> head(cbind(t, Mu))

t Mu

0.00 0.0000000000

2 0.01 0.0006902169
3 0.02 0.0013770686
4 0.03 0.0020605718
5 0.04 0.0027407429
6 0.05 0.0034175987

Note the first value which is the integral from 0 to 0, so by definition 0.

1.3.2 Cumulative risks

Here is the theory where we need integration: The cumulative risk of OAD at time ¢ is:

Row = /0 t)\(u)S(u) du = /O t/\(u) exp<— /O Ns) + uls) ds) du

where A is the rate of 0AD (lam), and p the mortality rate (mrt). A similar formula is
obtained for the cumulative risk of Dead (that is “dead without OAD”), by exchanging A
and .

The prectical calculation of these quantities are on pages 214-5 of “Epidemiology with
R”.
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10.

This means that if we have estimates of A\ and p as functions of time, we can derive
the cumulative risks. In practice this will be by numerical integration; compute the
rates at closely spaced intervals and evaluate the integrals as sums. This is easy, but
what is not so easy is to come up with confidence intervals for the cumulative risks.

Confidence intervals are most conveniently produced by simulation (“parametric
bootstrap” as some say):

(a) generate a random vector from the multivariate normal distribution with mean
equal to the parameters of the model, and variance-covariance equal to the

estimated variance-covariance of the parameter estimates (the Hessian as it is
called).

use this to generate a simulated set of rates evaluated a closely spaced times

—_—
o o

use these in numerical integration to derive state probabilities at these times

—~
o,
S— N N N

repeat 1000 times, say, to obtain 1000 sets of state probabilities

—
@)

use these to derive confidence intervals for the state probabilities as the 2.5 and
97.5 percentiles of the state probabilities at each time

This machinery is implemented in the function ci.Crisk

> cR <- ci.Crisk(mods = 1ist(0AD = gll,
+ Dead = gml),
+ nd = nd)

NOTE: Times are assumed to be in the column tfd at equal distances of 0.01
> str(cR)

List of 4
$ Crisk: num [1:1501, 1:3, 1:3] 1 0.991 0.983 0.975 0.968 ...

..— attr(*, "dimnames")=List of 3
..$ tfd : chr [1:1501] "O" "0.01" "0.02" "0.03"
..$ cause: chr [1:3] "Surv" "OAD" "Dead"

U : chr [1:3] "50%" "2.5%" "97.5%"

$ Srisk: num [1:1501, 1:2, 1:3] 0 0.000692 0.001374 0.002048 0.002713 ...

..— attr(*, "dimnames")=List of 3
..$ tfd : chr [1:1501] "O" "0.01" "0.02" "0.03"
..$ cause: chr [1:2] "Dead" "Dead+OAD"

... 3 : chr [1:3] "50%" "2.5%" "97.5%"

$ Stime: num [1:1501, 1:3, 1:3] 0 0.00996 0.01983 0.02963 0.03934 ...

..— attr(*, "dimnames")=List of 3
..$ tfd : chr [1:1501] "O" "0.01" "0.02" "0.03"
..$ cause: chr [1:3] "Surv" "OAD" "Dead"

... 8 : chr [1:3] "50%" "2.5%" "97.5%"

$ time : num [1:1501] 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 ...
- attr(*, "int")= num 0.01

There are 4 components of the results, the three first are simply arrays with 2 or 3
functions of time with confidence intervals.

So now plot the cumulative risks of being in each of the states (the Crisk
component):
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> matshade (cR$time, cbind(cR$Crisk[,1,],

+ cR$Crisk[,2,],
+ cR$Crisk[,3,]), plot = TRUE,
+ lwd = 2, col = c("limegreen","red","black"))
1.0
0.8
0.6
>
0.4
0.2
0.0—
[ I I |
0 5 10 15
X

Figure 1.8: Cumulative risks of being in each of the states DM (green), OAD (red) and Dead
../graph/cmpr-crisk

11. Plot the stacked probabilities (matrix 2 polygons):

> mat2pol (cR$Crisk[,3:1,1],
+ col = c("forestgreen", "red", "black") [3:1])

The component Srisk has the confidence limits of the stacked probabilities, add
these to the plot, for example by semi-transparent shades or dotted lines,

If you are really entrepreneurial, devise a function that will take the Srisk
component of cR and produce a stacked plot with shaded confidence limits; here is
the stacked plot:
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> matshade (cR$time, cbind(cR$Srisk[,1,],
+ cR$Srisk[,2,]), plot = TRUE,
+ lwd = 2, col = c("black", "red"),
+ ylim = 0:1, yaxs = "i")
Note the yaxs = "i"...
You may want to look at adjustcolor or rgb to see how to make semi-transparent
colours.

12. Tt is not only the cumulative risks of being in different states that my be of interest,

the integrals — area under the cumulative risk curves are of interest too. The
cumulative risks are probabilities, so dimensionless, which means that integrals of
these along the time-axis will have dimension time; they will represent the expected
time spent in each of the states.

The areas between the lines (up to say 10 years) are expected sojourn times, that
1s:

e expected years alive without OAD

e expected years lost to death without OAD
e expected years after OAD, including years dead after OAD

Not all of these are of direct relevance; actually only the first may be so. They are
available (with simulation-based confidence intervals) in the component of cR, Stime
(Sojourn time).

A relevant quantity would be the expected time alive without OAD during the first 5,
10 and 15 years:
> str(cR$Stime)

num [1:1501, 1:3, 1:3] 0 0.00996 0.01983 0.02963 0.03934 ...
- attr(*, "dimnames")=List of 3

..$ tfd : chr [1:1501] "O" "0.01" "0.02" "0.03" ...

..$ cause: chr [1:3] "Surv" "OAD" "Dead"

.8 : chr [1:3] "50%" "2.5%" "97.5%"

> round (cR$Stime[c("5","10","15"),"Surv",], 1)
tfd 50% 2.5% 97.5%

5 3.2 3.1 3.3
10 5.1 4.9 5.3
1566.4 6.0 6.8

13. We can also compute the expected fraction of the first 5, 10, 15 years alive:

> (mY <- matrix(rep(1:3 * 5, 3), 3, 3))

(,11 [,2] [,3]
[1,] 5 5 5
[2,] 10 10 10
[3,] 15 15 15
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> round (100 * cR$Stime[c("5","10","15"),"Surv",] / mY, 1)

tfd 50% 2.5% 97.5%
5 64.7 62.5 66.8
10 51.3 49.1 53.4
15 42.7 40.3 45.0

This can also be shown as a function of time; how large a fraction of the first ¢ time
can a person expect to be alive, for ¢ ranging from 0 to 15 years:

> matshade (cR$time, cR$Stimel, "Surv",] /

+ cbind(cR$time, cR$time, cR$time) * 100,
+ plot=TRUE,
+ ylim = 0:1%100, yaxs = "i", xaxs = "i")

Amend the plot with proper axis labels.
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1.4 Multistate models: steno?2

1. Lexis object for steno2
2. rcut using st2alb
3. boxes to get an overview - revise data to avoid norm—mac
4. Mortality rates: 3 initial states, 2 outcomes
5. addCov using st2clin
6. Mortality by chol and bp
7. Transitions between micro vascular complications states, one model, use stack
8. State probabilities for different baseline values of sex and age.
9. Limitations in using clinical measurements as time-dependent variables without a
model for the clinical variables
10. State probabilities only using time since entry; comparison to Aalen-Johansen
approach from survival
11. ...comparison of smooth modeling to Cox-models, using the mstate machinery.
1.4.1 Paraphernalia
First we load the relevant packages and set options:
> library(Epi)
> library(popEpi)
> # popEpi::splitMulti returns a data.frame rather than a data.table
> options("popEpi.datatable" = FALSE)
> library(tidyverse)
1.4.2 Lexis object for steno2
1. Bring in the steno2 dataset, and convert dates to cal.yr to get a natural unit of

time (years—365.25 days, that is). Because of the way data were anonymized, the
doEnd is not perfectly aligned to doDth, which we remedy on the fly by resetting
doEnd if a doDth is known.

> data(steno2)
> steno2 <- transform(cal.yr(steno2),

+ doEnd = ifelse(!is.na(doDth),
+ doDth,
+ doEnd))

> str(steno2)
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'data.frame': 160 obs. of 14 variables:

$ id :num 1 23456789 10 ...

$ allo : Factor w/ 2 levels "Int","Conv": 1 122222111
$ sex : Factor w/ 2 levels "F","M": 2 222221222 ...
$ baseCVD : num 0000010000 ...

$ deathCVD: num 0000100010 ...

$ doBth : 'cal.yr' num 1932 1947 1943 1945 1936 ...

$ doDM : 'cal.yr' num 1991 1982 1983 1977 1986 ...

$ doBase : 'cal.yr' num 1993 1993 1993 1993 1993 ...

$ doCVD1 : 'cal.yr' num 2014 2009 2002 1995 1994 ...

$ doCVD2 : 'cal.yr' num NA 2009 NA 1997 1995 ...

$ doCVD3 : 'cal.yr' num NA 2010 NA 2003 1998 ...

$ doESRD : 'cal.yr' num NaN NaN NaN NaN 1998 ...

$ doEnd : num 2015 2015 2002 2003 1998 ...

$ doDth : 'cal.yr' num NA NA 2002 2003 1998 ...

2. Start by setting up a Lexis data frame for the entire observation time for each
person; from entry (doBase, date of baseline) to exit, doEnd. Note that we call the
initial state Mic(roalbuminuria), because all patients in the Steno2 study had this
status—it was one of the inclusion criteria:

> L2 <- Lexis(entry = list(per = doBase,

+ age = doBase - doBth,

+ tfi = 0),

+ exit = list(per = doEnd),

+ exit.status = factor(deathCVD + !is.na(doDth),

+ labels=c("Mic","D(oth)","D(CVD)")),
+ id = id,

+ data = steno2)

NOTE: entry.status has been set to "Mic" for all.

> summary(L2, t = TRUE)

Transitions:
To
From Mic D(oth) D(CVD) Records: Events: Risk time: Persons:
Mic 67 55 38 160 93 2420.91 160
Timescales:

per age tfi

> boxes (L2, boxpos = TRUE, show.BE = TRUE)

How many deaths are there in the cohort?
How many person-years?
3. In this set-up we can study the CVD and the non-CVD mortality rates, a classical

competing risks problem, but we want in particular to see how the mortality rates
depend on albuminuria status.
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In order to allocate follow-up (person-time and events) to current albuminuria status
we need to know when the persons change status; this is recorded in the data frame
st2alb.

We will cut the follow-up at possibly several times per person, so will use the function
rcutLexis (recurrent cuts), which requires a data frame of transitions with columns
lex.id, cut and new.state — see ?rcutLexis.

We change the scale of the date of transition to year by cal.yr (to align with the per

variable in L2), rename the id variable to lex.id and the date variable doTr to cut

> data(st2alb)
> cut2 <- rename(cal.yr(st2alb),

+ lex.id = id,
+ cut = doTr,
+ new.state = state)

> str(cut2)

'data.frame': 563 obs. of 3 variables:
$ lex.id tnum 1111122222 ...
$ cut : 'cal.yr' num 1993 1995 2000 2002 2007 ...

$ new.state: Factor w/ 3 levels "Norm","Mic","Mac": 2 1 21212322 ...

How many persons are in the cut2 data frame?

> with(cut2, addmargins(table(table(lex.id))))

1 2 3 4 5 Sum
4 25 40 46 41 156

Explain the entries in this table.

. Now cut at intermediate transition times (note that rcutLexis assumes that values

in the cut column refer to the per timescale by default since it is the first of the time
scales):

> L3 <- rcutLexis(L2, cut2)
> summary (L3)

Transitions:
To
From Mic Norm Mac D(oth) D(CVD) Records: Events: Risk time: Persons:
Mic 299 72 65 27 13 476 177 1383.56 160
Norm 31 90 b5 14 7 147 57 608.75 69
Mac 20 3 44 14 18 99 55 428.60 64
Sum 350 165 114 55 38 722 289 2420.91 160

> boxes (L3, boxpos = TRUE, cex = 0.8)

Note that there are transitions both ways between all three of Norm, Mic and Mac,
which is a bit illogical, since we have a natural ordering of states: Norm < Mic < Mac
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5. In order to remedy this anomaly we find all transitions Norm — Mac and provide a
transition Norm — Mic in between. And of course similarly for transitions
Mac — Norm.

The relevant “jump” transitions are easily found:

> (jump <-

+ subset (L3, (lex.Cst == "Norm" & lex.Xst == "Mac") |

+ (lex.Xst == "Norm" & lex.Cst == "Mac"))[,

+ c("lex.id", "per", "lex.dur","lex.Cst", "lex.Xst")])
lex.id per lex.dur lex.Cst lex.Xst

291 70 1999.487 2.6748802 Mac Norm

353 86 2001.759 12.8158795 Norm Mac

506 130 2000.910 1.8781656 Mac Norm

511 131 1997.756 4.2354552 Norm Mac

525 136 1997.214 0.4709103 Mac Norm

526 136 1997.685 4.2436687 Norm Mac

654 171 1996.390 5.3388090 Norm Mac

676 175 2004.585 9.8836413 Norm Mac

What we need to do for these “jumps” is to provide an extra transition to Mic at a
time during the stay in either Norm or Mac, i.e. between per and per + lex.dur in
these records; we choose a random time in the middle 80% between the dates:

> set.seed(1952)
> xcut <- select(transform(jump,

+ cut = per + lex.dur * runif(per, 0.1, 0.9),
+ new.state = "Mic"),
+ c(lex.id, cut, new.state))
> xcut
lex.id cut new.state
291 70 2001.789 Mic
353 86 2012.232 Mic
506 130 2001.488 Mic
511 131 2001.032 Mic
525 136 1997.610 Mic
526 136 2000.780 Mic
654 171 1997.057 Mic
676 175 2013.472 Mic

How many extra records will be used for cutting follow-up?

6. Now make extra cuts at these dates using rcutLexis with xcut on the L3 object:

> L4 <- rcutLexis(L3, xcut)
> summary (L4)

Transitions:
To
From Mic Norm Mac D(oth) D(CVD) Records: Events: Risk time: Persons:
Mic 312 72 65 30 14 493 181 1437.39 160
Norm 35 90 0 13 6 144 54 581.83 66
Mac 22 0 41 12 18 93 52 401.70 60

Sum 369 162 106 55 38 730 287 2420.91 160
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PMM

We see that there are no transitions directly between Norm and Mac in L4, so we can
make an intelligible plot of the transitions:

>
+
+
+
+

c(20,20,20,80,80),
c(50,80,20,75,25)),

boxes (L4, boxpos = list(x

show.BE
scale.R
cex = 0.8)

lanH ,

100,

Norm 13
581.8 — (2.2)

18

D(oth)
55

35
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Figure 1.9: Transitions between states in the Steno2 study.

. ./graph/ms-b4
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Describe the overall effect of albuminuria on the two mortality rates.

With this multistate model (well, there is no model yet) set up we can look at mortality
rates and see how they depend on the current albuminuria state, or look at the transition
rates between the different albuminuria states and assess how these depend on various
other covariates.

1.4.3 DMortality rates: 3 initial states, 2 outcomes, multiple time
scales

7. First we look at how the overall mortality depends on albuminuria status. We will
model the mortality rates with parametric functions, so we need to split the dataset
along some time scale; we will use 3 month intervals (they should be sufficiently small
to accommodate an assumption of constant rates in the interval):

> S4 <- splitMulti(L4, tfi = seq(0, 25, 1/4))
> summary (L4)

Transitions:
To
From Mic Norm Mac D(oth) D(CVD) Records: Events: Risk time: Persons:
Mic 312 72 65 30 14 493 181 1437.39 160
Norm 35 90 0 13 6 144 54 581.83 66
Mac 22 0 41 12 18 93 52 401.70 60
Sum 369 162 106 55 38 730 287 2420.91 160

> summary (54)

Transitions:
To
From Mic Norm Mac D(oth) D(CVD) Records: Events: Risk time: Persons:
Mic 5986 72 65 30 14 6167 181 1437.39 160
Norm 35 2418 0 13 6 2472 54 581.83 66
Mac 22 0 1644 12 18 1696 52 401.70 60
Sum 6043 2490 1709 55 38 10335 287 2420.91 160

We can then model the overall mortality rates as functions of age and duration (time
since entry) using the defaults for glm.Lexis (this function call will trigger a
warning):

> ma <- glm.Lexis(S4, ~ Ns(tfi, knots = seq( 0, 20, 5)) +
+ Ns(age, knots = seq(60, 75, 5)) +
+ lex.Cst)

stats::glm Poisson analysis of Lexis object S4 with log link:
Rates for transitions: Mic->D(oth), Norm->D(oth), Mac->D(oth), Mic->D(CVD), Norm->D(CV

The warning here just tells you that you are modeling the occurrence of any type of
death, so assuming that CVD and non-CVD death rates are identical, and assuming
the mortality rates are proportional between states of albuminuria.

The glm.Lexis is just a convenience wrapper for:
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> ma <- glm(cbind(lex.Xst 7inj, c("D(oth)", "D(CVD)") & lex.Cst != lex.Xst,
+ lex.dur)

+ ~ Ns(tfi, knots = seq( 0, 20, 5)) +

+ Ns(age, knots seq(60, 75, 5)) +

+ lex.Cst,

+ family = poisreg,

+ data = subset(S4, lex.Cst /inj, c("Norm", "Mic", "Mac")))

> # which gives the same as:
>
+
+
+
+
+
+

ma <- glm((lex.Xst }inj, c("D(oth)", "D(CVD)") & lex.Cst != lex.Xst)
~ Ns(tfi, knots = seq( 0, 20, 5)) +
Ns(age, knots = seq(60, 75, 5)) +
lex.Cst,
offset = log(lex.dur),
family = poisson,
data = subset(S4, lex.Cst /inj, c("Norm", "Mic", "Mac")))

—note the difference between poisreg and poisson syntax.

The parameters are (exponentiated, so on the rate-scale):

> round(ci.exp(ma), 2)

exp(Est.) 2.5%  97.5%
(Intercept) 0.00 0.00 0.02
Ns(tfi, knots = seq(0, 20, 5))1 6.30 1.21 32.72
Ns(tfi, knots = seq(0, 20, 5))2 4.11 0.95 17.67
Ns(tfi, knots = seq(0, 20, 5))3 42.02 0.93 1904.98
Ns(tfi, knots = seq(0, 20, 5))4 0.50 0.16 1.53
Ns(age, knots = seq(60, 75, 5))1 2.06 0.99 4.32
Ns(age, knots = seq(60, 75, 5))2 4.59 2.46 8.57
Ns(age, knots = seq(60, 75, 5))3 3.91 2.11 7.25
lex.CstNorm 1.04 0.61 1.79
lex.CstMac 1.77 1.10 2.85

We see there is a higher mortality in the Mac state but no discernible difference
between the Mic and the Norm states. It can be formally tested whether the three
states carry the same mortality using a Wald test:

> Wald(ma, subset = "lex.Cst'")

Chisq d.f. P
6.1107777 2.0000000 0.0471044

So the mortality from the three states is not the same, but it is also quite clear that
the mortality from state Mac is higher than the two other (surprise, surprise).

. Now do the same analysis for the two causes of death separately, using the to

argument to glm.Lexis:

> mo <- glm.Lexis(S4, ~ Ns(tfi, knots = seq( 0, 20, 5)) +
+ Ns(age, knots = seq(60, 75, 5)) +
+ lex.Cst,
+ to = "D(oth)")
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stats::glm Poisson analysis of Lexis object S4 with log link:
Rates for transitions: Mic->D(oth), Norm->D(oth), Mac->D(oth)

> round(ci.exp(mo), 3)

exp(Est.) 2.5% 97.5%
(Intercept) 0.000 0.000 6.000000e-03
Ns(tfi, knots = seq(O, 20, 5))1 111.549 2.334 5.331112e+03
Ns(tfi, knots = seq(O, 20, 5))2 29.787 1.287 6.892080e+02
Ns(tfi, knots = seq(O, 20, 5))3 22802.029 3.309 1.571478e+08
Ns(tfi, knots = seq(O, 20, 5))4 1.768 0.304 1.027600e+01
Ns(age, knots = seq(60, 75, 5))1 2.854 1.063 7.662000e+00
Ns(age, knots = seq(60, 75, 5))2 4.163 1.926 8.998000e+00
Ns(age, knots = seq(60, 75, 5))3 5.569 2.402 1.291500e+01
lex.CstNorm 1.023 0.531 1.970000e+00
lex.CstMac 0.999 0.505 1.977000e+00

> mC <- glm.Lexis(S4, ~ Ns(tfi, knots = seq( 0, 20, 5)) +

+ Ns(age, knots = seq(60, 75, 5)) +
+ lex.Cst,
+ to = "D(CVD)")

stats::glm Poisson analysis of Lexis object S4 with log link:
Rates for transitions: Mic->D(CVD), Norm->D(CVD), Mac->D(CVD)

> round(ci.exp(mC), 3)

exp(Est.) 2.5% 97.5%

(Intercept) 0.004 0.001 0.026
Ns(tfi, knots = seq(0, 20, 5))1 1.237 0.176 8.671
Ns(tfi, knots = seq(0, 20, 5))2 1.988 0.302 13.105
Ns(tfi, knots = seq(0, 20, 5))3 1.368 0.018 105.801
Ns(tfi, knots = seq(0, 20, 5))4 0.143 0.019 1.098
Ns(age, knots = seq(60, 75, 5))1 1.488 0.475 4.658
Ns(age, knots = seq(60, 75, 5))2 5.922 1.944 18.039
Ns(age, knots = seq(60, 75, 5))3 2.565 1.007 6.534
lex.CstNorm 1.078 0.411 2.827
lex.CstMac 3.520 1.722 7.194

What is the conclusion w.r.t. the effect of albuminuria state on the two mortality
rates?

Can you make a formal test of a relevant hypothesis?

> Wald(mo, subset = "Cst'")

Chisq d.f. P
0.005164312 2.000000000 0.997421175

> Wald(mC, subset = "Cst'")

Chisq d.f. P
1.384601e+01 2.000000e+00 9.848646e-04
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. We can show how mortality rates look for persons currently in state Mic entering the
study at ages 60, 65 and 70, as a function of current age. We need a prediction data
frame, with values for all variables in the model:

> expand.grid(tfi = c(NA, seq(0, 20, 5)),

+ ain = c(60, 65, 70))[-1,]
tfi ain
2 0 60
3 5 60
4 10 60
5 15 60
6 20 60
7 NA 65
8 0 65
9 5 65
10 10 65
11 15 65
12 20 65
13 NA 70
14 0 70
15 5 70
16 10 70
17 16 70
18 20 70
> prf <- transform(expand.grid(tfi = c(NA, seq(0, 20, 0.5)),
+ ain = c(60, 65, 70))[-1,],
+ age = ain + tfi,
+ lex.Cst = "Mic")
> head (prf)
tfi ain age lex.Cst
2 0.0 60 60.0 Mic
3 0.5 60 60.5 Mic
4 1.0 60 61.0 Mic
51.5 60 61.5 Mic
6 2.0 60 62.0 Mic
7 2.5 60 62.5 Mic
> matshade (prf$age, cbind(ci.pred(mo, prf),
+ ci.pred(mC, prf)) * 100,
+ 1ty = c("22","solid"), lend = "butt", 1lwd = 3, col = 1:2,
+ log = "y", ylim = ¢(0.01,50), plot = TRUE)

The rates of death from other causes is very small at the beginning and increases
steeply over the first 5 years of follow-up, while the CVD mortality is pretty stable
with a foreseeable increase by age.

Give a proper description of the curves.

. We can show the impact of albuminuria state on the mortality rates in a 3-panel
layout:
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> par (mfrow=c(1,3))
> for(st in c("Norm'","Mic", "Mac"))
{
matshade (prf$age, cbind(ci.pred(mo, transform(prf, lex.Cst = st)),
ci.pred(mC, transform(prf, lex.Cst st))) * 100,
1ty = c("22","solid"), lend = "butt", lwd = 3, col = 1:2,
log = "y", ylim = c¢(0.1,50), plot = TRUE)
text (60, 50, st, adj = 0)
F

+ + 4+ + 4+ + 4+

How are the curves in the three panels related?
Describe the effect of albuminuria status on the two types of mortality.

How can you see this from the model parameters?

1.4.4 State probabilities for different baseline values of sex and
age.
11. We would like to see how the probability of being in each of the states look as a

function of time since entry, and we will in particular be interested in how this
depends on allo, the allocation to intensified or standard treatment.

Thus we will need models for 1) all cause mortality rates and 2) transition rates
between albuminuria states.

In this analysis we will collapse the two causes of death to one; this is done by
Relevel, that also allows re-sequencing of states (see 7Relevel.Lexis and
7Relevel):

> summary (S4)

Transitions:
To
From Mic Norm Mac D(oth) D(CVD) Records: Events: Risk time: Persons:
Mic 5986 72 65 30 14 6167 181 1437.39 160
Norm 35 2418 0 13 6 2472 54 581.83 66
Mac 22 0 1644 12 18 1696 52 401.70 60
Sum 6043 2490 1709 55 38 10335 287 2420.91 160

> S5 <- Relevel(S4, list(2, 1, 3, Dead = 4:5))
> summary (S5)

Transitions:
To
From Norm Mic Mac Dead Records: Events: Risk time: Persons:
Norm 2418 35 0 19 2472 54 581.83 66
Mic 72 5986 65 44 6167 181 1437.39 160
Mac 0 22 1644 30 1696 52 401.70 60
Sum 2490 6043 1709 93 10335 287 2420.91 160

> boxes (S5, boxpos = TRUE)
> par (mfrow=c(1,2))
> for (al in levels(S5$allo))
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{

boxes (subset (S5, allo == al),
boxpos = list(x = c(15,15,15,85),

v c(15,50,85,50)),

cex = 0.8, show.BE = 'Nz',
scale.R = 100)

text (85, 90, al, adj = 1)

}

+ + + + + + + +

Describe how mortality depends on albuminuria status and intervention group.
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Figure 1.10: Transitions between states after collapsing the two causes of death.
../graph/ms-b5

12. Now model the overall mortality using a proportional hazards model, but allowing
different mortality between the two allocation groups, and the three albuminuria
groups:

> m0 <- glm.Lexis(S5, ~ Ns(tfi, knots = seq( 0, 20, 5)) +
+ Ns(age, knots = seq(60, 75, 5)) +
+ lex.Cst * allo)

stats::glm Poisson analysis of Lexis object S5 with log link:
Rates for transitions: Norm->Dead, Mic->Dead, Mac->Dead

> round(ci.exp(m0), 3)



Practicals 1.4 Multistate models: steno2 41

exp(Est.) 2.5} 97.5%

(Intercept) 0.002 0.000 0.015
Ns(tfi, knots = seq(0, 20, 5))1 6.215 1.196  32.302
Ns(tfi, knots = seq(0, 20, 5))2 4.514 1.053 19.354
Ns(tfi, knots = seq(0, 20, 5))3 45.137 0.994 2048.866
Ns(tfi, knots = seq(0, 20, 5))4 0.542 0.177 1.661
Ns(age, knots = seq(60, 75, 5))1 2.156 1.035 4.489
Ns(age, knots = seq(60, 75, 5))2 4.725 2.536 8.806
Ns(age, knots = seq(60, 75, 5))3 4.095 2.219 7.557
lex.CstMic 0.883 0.396 1.970
lex.CstMac 1.468 0.586 3.675
alloConv 1.605 0.644 4.001
lex.CstMic:alloConv 1.133 0.377 3.402
lex.CstMac:alloConv 1.155 0.346 3.851

We would however like to see the allocation effect separately for each albuminuria
state; this is done by the “/” operator in the model formula:

> mi <- glm.Lexis(S5, ~ Ns(tfi, knots = seq( 0, 20, 5)) +
+ Ns(age, knots = seq(60, 75, 5)) +
+ lex.Cst / allo)

stats::glm Poisson analysis of Lexis object S5 with log link:
Rates for transitions: Norm->Dead, Mic->Dead, Mac->Dead

> round(ci.exp(mi), 3)

exp(Est.) 2.5} 97.5%

(Intercept) 0.002 0.000 0.015
Ns(tfi, knots = seq(0, 20, 5))1 6.215 1.196 32.302
Ns(tfi, knots = seq(0, 20, 5))2 4.514 1.053 19.354
Ns(tfi, knots = seq(0, 20, 5))3 45.137 0.994 2048.866
Ns(tfi, knots = seq(0, 20, 5))4 0.542 0.177 1.661
Ns(age, knots = seq(60, 75, 5))1 2.156 1.035 4.489
Ns(age, knots = seq(60, 75, 5))2 4.725 2.536 8.806
Ns(age, knots = seq(60, 75, 5))3 4.095 2.219 7.557
lex.CstMic 0.883 0.396 1.970
lex.CstMac 1.468 0.586 3.675
lex.CstNorm:alloConv 1.605 0.644 4.001
lex.CstMic:alloConv 1.819 0.99%4 3.330
lex.CstMac:alloConv 1.854 0.858 4.003

> c(deviance (m0), deviance(mi))

[1] 969.5975 969.5975

The use of the deviance gives a good indication that the models fitted actually is the
same model, just differently parametrized.

What is the meaning of the parameters?

If you want to test for interaction use the formulation mO, and see if the two
interaction parameters are 0:
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13.

> ci.exp(m0, subset = ":")

exp(Est.) 2.5% 97.5%
lex.CstMic:alloConv 1.133265 0.3774755 3.402314
lex.CstMac:alloConv 1.154598 0.3461396 3.851325

>  Wald(mO, subset = ":")

Chisq d.f. P
0.06357982 2.00000000 0.96871008

So there is no indication of interaction, that means that we can safely assume that
the allocation effect on mortality is the same for all three groups of albuminuria.

For a complete description of transitions we need model for the transitions between
albuminuria states; we will use different models for deterioration and improvement:

> det <- glm.Lexis(S5, ~ Ns(tfi, knots = seq( 0, 20, 5)) +
+ Ns(age, knots = seq(60, 75, 5)) +
+ lex.Cst / allo,

+ from = c("Norm","Mic"),

+ to = c¢("Mic", "Mac"))

stats::glm Poisson analysis of Lexis object S5 with log link:
Rates for transitions: Norm->Mic, Mic->Mac

> imp <- glm.Lexis (S5, ~ Ns(tfi, knots = seq( 0, 20, 5)) +
+ Ns(age, knots = seq(60, 75, 5)) +
+ lex.Cst / allo,
+
+

to = c("Norm", "Mic"),
from = c("Mic", "Mac"))

stats::glm Poisson analysis of Lexis object S5 with log link:
Rates for transitions: Mic->Norm, Mac->Mic

> round( ci.exp(det, subset="al"), 1)

exp(Est.) 2.5% 97.5%
lex.CstNorm:alloConv 0.5 0.2 1.1
lex.CstMic:alloConv 1.9 1.2 3.2

> round( ci.exp(imp, subset="al"), 1)

exp(Est.) 2.5% 97.5%
lex.CstMic:alloConv 0.5 0.3 0.9
lex.CstMac:alloConv 1.3 0.5 3.2

> round(1/ci.exp(imp, subset="al"), 1)[,c(1,3,2)]

exp(Est.) 97.5% 2.5
lex.CstMic:alloConv 1.9 2 3.
3 1.

1. 1
lex.CstMac:alloConv 0.8 0. 9

What do the parameters in the model represent?

Why that inverted version of the parameters in the imp model?
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14. We now have statistical models for all transitions, one common model for the three
mortality rates, and two models for transitions between albuminuria states.

We can therefore assess the probability of being in each of the states at a given time
after entry to the study, separately for the the two intervention groups. However
these depend on the age at entry to the study (because current age (age) and time
since entry, (tfi) are both in the model), so this can be approached in (at least) two
different ways:

(a) Use a population with the same age-distribution as the entire study population

(b) Evaluate the probabilities for a prespecified range of ages at entry.

The state probabilities are not trivial to compute, essentially they can only be
computed by simulation'.

What is needed for this is a data frame of persons indicating their initial status.
simLexis will then simulate their individual trajectories through states (what
transition takes place when) and produce a simulated cohort of persons in the form of
a Lexis object. The initial data frame should be a Lexis object, but the values of
lex.Xst and lex.dur need not be given, since these will be simulated.

First construct a cohort with the same covariates as the entire study for each of the
allocation groups:

> ini <- L2[,c("per", "age", "tfi")]
> ini <- rbind(transform(ini, lex.Cst = "Mic", allo = "Int"),
+ transform(ini, lex.Cst = "Mic", allo = "Conv"))
> str(ini)
Classes ‘Lexis’ and 'data.frame': 320 obs. of b5 variables:
$ per : 'cal.yr' num 1993 1993 1993 1993 1993 ...
$ age : 'cal.yr' num 61.1 46.6 49.9 48.5 57.3 ...
$ tfi :num 00 0O00O0O0O0O0O0 ...
$ lex.Cst: Factor w/ 1 level "Mic": 1111111111 .
$ allo : Factor w/ 2 levels "Int","Conv": 1111111111
- attr(x, "breaks")=List of 3
..$ per: NULL
..$ age: NULL
..$ tfi: NULL

- attr(*, "time.scales")= chr '"per" "age" "tfi"
— attr(*, "time.since")= chr nnonn onn

This will be the initial values in the cohort we follow through states.

We also need a specification of what transitions are modeled, since the simulated
transitions will be using predictions from these models. This is specified in a list of
lists (remember what a list is?7)

LA detailed description of the use of simLexis is available in the vignette in the Epi package, also available
as http://bendixcarstensen.com/Epi/simLexis.pdf


http://bendixcarstensen.com/Epi/simLexis.pdf
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> Tr <- list(Norm = list(Mic = det,
+ Dead = mi),
+ Mic = list(Mac = det,
+ Norm = imp,
+ Dead = mi),
+ Mac = list(Mic = imp,
+ Dead = mi))
> lapply(Tr, names)
$Norm
[1] "MiC“ "Dead"
$Mic
[1] "Mac“ "NOI‘III" "Dead"
$Mac
[1] "MiC“ "Dead"
For example, the object Tr$Norm$Dead is a model for the transition rate
Norm — Dead; we see that there are 7 models in the specification of Tr, corresponding
to each of the 7 transitions in the diagram in figure 1.10.

15. First we simulate transitions from a large cohort that looks like the study population,

say 10 copies of each persons in the original data set (see ?simLexis):

> set.seed(1952)
> system. time(
+ Sorg <- simLexis(Tr = Tr, # models for each transition

+ init = ini, # cohort of straters

+ N = 10, # how many copies of each

+ t.range = 20, # how long should we simulate before censoring
+ n.int = 200))# how many intervals for evaluating rates

user system elapsed
20.440 6.544 19.635

> summary(Sorg, t = T)

Transitions:
To

From Mic Norm Mac Dead Records: Events: Risk time: Persons:
Mic 661 1468 1282 856 4267 3606 26941.05 3200
Norm 706 370 0 392 1468 1098 11808.25 1347
Mac 361 0 293 628 1282 989 7570.29 1164
Sum 1728 1838 1575 1876 7017 5693 46319.59 3200

Timescales:

per age tfi

> subset (Sorg, lex.id 7inj, 29:32)
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lex.id per age tfi  lex.dur lex.Cst lex.Xst allo cens
75 29 1993.373 49.94387 0.000000 3.793669 Mic Mac Int 2013.373
76 29 1997.167 53.73754 3.793669 13.478129 Mac Mic 1Int 2013.373
7 29 2010.645 67.21567 17.271798 2.728202 Mic Mic 1Int 2013.373
78 30 1993.373 49.94387 0.000000 19.821493 Mic Dead Int 2013.373
79 31 1993.337 48.50376 0.000000 4.423084 Mic Norm Imnt 2013.337
80 31 1997.761 52.92685 4.423084 15.576916 Norm Norm Int 2013.337
81 32 1993.337 48.50376 0.000000 8.402331 Mic Dead Int 2013.337

> addmargins (table(table(Sorg$lex.id)))

1 2 3 4 5 6 7 8 Sum
869 13556 588 304 54 23 6 1 3200

Describe in words how the simulated data look, and what each record represents.

We can now just count how many of the original 3200 persons are in each of the
states at each time; this is done by the function nState:

> system.time(
+ Nst <- nState(Sorg,

+ at = seq(0, 20, 0.1),
+ from = 0,
+ time.scale = "tfi"))

user system elapsed
2.640 0.007 2.646

> str(Nst)

'table' int [1:201, 1:4] 3200 3130 3063 3019 2964 2905 2860 2817 2779 2736 ...

- attr(x, "dimnames")=List of 2
..$ when : chr [1:201] "O" "O.1" "0.2" "0Q0.3"
..$ State: chr [1:4] "Mic" "Norm" "Mac" "Dead"

> head(Nst)

State

when Mic Norm Mac Dead
0 3200 0 0
3130 a7 22
3063 101 35
3019 135 44
2964 171 62
2905 214 77

O OO OO
O WN =
P ONRFR, PR, O

This is not necessarily a relevant summary; we would be interested in seeing how
things look in each of the allocation groups, Int and Conv. There is no guaranteed
order of the columns in the Nst object, so we explicitly reorder the columns:
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> Nint <- nState(subset(Sorg, allo == "Int"),
+ at = seq(0, 20, 0.1),
+ from = 0,
+ time.scale = "tfi")[,c("Norm","Mic", "Mac", "Dead")]
> Nconv<- nState(subset (Sorg, allo == "Conv"),
+ at = seq(0, 20, 0.1),
+ from = 0,
+ time.scale = "tfi")[,c("Norm","Mic", "Mac", "Dead")]
> head(Nint)
State
when Norm Mic Mac Dead
0 0 1600 0 0
0.1 29 1564 7 0
0.2 69 1517 14 0
0.3 90 1496 14 0
0.4 112 1470 18 0
0.5 139 1437 24 0
> head (Nconv)
State
when Norm Mic Mac Dead
0 0 1600 0 0
0.1 18 1566 15 1
0.2 32 1546 21 1
0.3 45 1523 30 2
0.4 59 1494 44 3
0.5 75 1468 53 4
16. If we want the cumulated state probabilities we can derive these by pState, that

yields a matrix with the cumulative state probabilities. This has class pState, an
object for which there is plot method:

> Pint <- pState(Nint )
> Pconv <- pState(Nconv)
> str(Pint)

'pState' num [1:201, 1:4] 0 0.0181 0.0431 0.0563 0.07 ...
- attr(*, "dimnames")=List of 2

..$ when : chr [1:201] "O"™ "O.1"™ "0.2" "0.3"

..$ State: chr [1:4] "Norm" "Mic" "Mac" "Dead"

> head(Pint)

State
when Norm Mic Mac Dead
0 0.000000 1.000000 1 1
0.1 0.018125 0.995625 1 1
0.2 0.043125 0.991250 1 1
0.3 0.056250 0.991250 1 1
0.4 0.070000 0.988750 1 1
0.5 0.086875 0.985000 1 1
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17.

Describe the structure of Pst.

There is a standard plotting method for a pState object, in order

par (mfrow = c(1,2), mar=c(3,3,2,2))
plot (Pint, col = c("forestgreen'", "orange", "red", gray(0.4)),
xlim = ¢(0,20))
lines(as.numeric (rownames (Pint)), Pint[,"Mac"], lwd = 4)
text (rownames (Pint) [100],
Pint[100,] - diff(c(0,Pint[100,]1))/2,
colnames (Pint),
col = "white")
plot (Pconv, col = c("forestgreen", "orange", "red", gray(0.4)),
xlim = ¢(20,0))
lines(as.numeric (rownames (Pconv)), Pconv[,"Mac"], lwd = 4)
text (rownames (Pconv) [100],
Pconv[100,] - diff(c(0,Pconv[100,]1))/2,
colnames (Pconv),
col = "white")
mtext (c("Int","Conv"), side = 3, at = c(1,3)/4, outer

V+++VV+sV+++VYV+ VY

TRUE, line = -2)
Redo the plot with proper labeling of axes, including units where needed.

The plot 1.11 is however of limited interest, the probabilities here are really “the
probability that a randomly chosen person from the Steno 2 study...”. So we are
referring to a universe that is not generalizable, the reference is to a particular
distribution of ages at entry into the study. The plot is only partially relevant for
showing the intervention effect.

Even if we take the modeling background deeply serious and accept that occurrence
rates depend only on current age (age), time since entry (tfi) and treatment
allocation (allo), the assumption of age-distribution as in the Steno 2 study is quite
absurd; who wants to refer to this? Often this is disguised in terms such as
“population averaged”.

Therefore, it would be more relevant to show the results for a homogeneous
population of persons aged, say, 50 years a entry. This would just require a different
init data frame:

> ini <- S5[1:10,c("lex.id", "per", "age", "tfi", "lex.Cst", "allo")]
> str(ini)

Classes ‘Lexis’ and 'data.frame': 10 obs. of 6 variables:
$lex.id : num 1 111111111

$ per : num 1993 1993 1994 1994 1994 ...

$ age :num 61.1 61.2 61.3 61.6 61.8 ...

$ tfi :num O 0.118 0.25 0.5 0.75 ...

$ lex.Cst: Factor w/ 4 levels "Norm","Mic","Mac",..: 2222222222
$ allo : Factor w/ 2 levels "Int","Conv": 1 111111111

attr(*, "time.scales")= chr '"per" "age" "tfi"

- attr(x, "time.since")= chr "" mn un

- attr(*, "breaks")=List of 3

..$ per: NULL

..$ age: NULL

..$ tfi: num 0 0.25 0.5 0.75 1 1.25 1.5 1.76 2 2.25 ...
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Figure 1.11: State probabilities for the two intervention groups, for populations of the same
structure as the original total Steno2 population.
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1:10

rep(seq(45,65,5), 2)

0

factor("Mic", levels = levels(S5$lex.Cst))
rep(c("Int","Conv"), each = 5)

per age tfi lex.Cst allo ain

326
444
576
826
076
326

826

45 0 Mic Int 45
50 0 Mic Int 50
55 0 Mic Int 55
60 0 Mic Int 60
65 0 Mic Int 65
45 0 Mic Conv 45
50 0 Mic Conv 50
55 0 Mic Conv 55
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9 9 1995.076 60 O Mic Conv 60
10 10 1995.326 65 O Mic Conv 65

> str(ini)

Classes ‘Lexis’ and 'data.frame': 10 obs. of 7 variables:

$ lex.id : int 1234567 8 9 10

$ per : num 1993 1993 1994 1994 1994 ...

$ age : num 45 50 55 60 65 45 50 55 60 65

$ tfi :num 00 0O0O0O0O0O0O0O0

$ lex.Cst: Factor w/ 4 levels "Norm","Mic","Mac",..: 2222222222
$ allo : chr "Int" "Int" "Int" "Int"

$ ain : num 45 50 55 60 65 45 50 55 60 65

attr(*, "time.scales")= chr ‘'"per" "age" "tfi"

attr(*, "time.since")= chr "" "n v

attr(*, "breaks")=List of 3

..$ per: NULL

..$ age: NULL

..$ tfi: num 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 ...

Note that it is important that we enter the variable lex.Cst as a factor with the
same levels as in the Lexis object S5.

For each of these combinations of age (at entry) and treatment allocation we will
simulate 100 persons (note the we are using the same transition rates, the models in
Tr):

> system.time(
+ Sdef <- simLexis(Tr = Tr,

+ init = ini,
+ N = 100,
+ t.range = 20,
+ n.int = 200))
user system elapsed
7.298 4.500 6.264
> str(Sdef)
Classes ‘Lexis’ and 'data.frame': 2194 obs. of 10 variables:
$ lex.id : int 11223 33444 ...
$ per : num 1993 1994 1993 1999 1993 ...
$ age : num 45 45.9 45 50.6 45 ...
$ tfi :num O 0.854 0 5.619 0 ...
$ lex.dur: num 0.854 7.309 5.619 14.381 4.328 ...
$ lex.Cst: Factor w/ 4 levels "Norm","Mic","Mac",..: 2121212212 ...
$ lex.Xst: Factor w/ 4 levels "Norm","Mic","Mac",..: 1411122121
$ allo : chr "Int" "Int" "Int" "Int"
$ ain : num 45 45 45 45 45 45 45 45 45 45 | ..
$ cens : num 2013 2013 2013 2013 2013 ...
- attr(x, "breaks")=List of 3
..$ per: NULL
..$ age: NULL

..$ tfi: num 0 0.25 0.5 0.756 1 1.25 1.5 1.75 2 2.25 ...
- attr(*, "time.scales")= chr '"per" "age" "tfi"
- attr(x, "time.since")= chr "" """ nn
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> summary (Sdef)

Transitions:
To

From Norm Mic Mac Dead Records: Events: Risk time: Persons:

Norm 116 191 0
Mic 438 196 422
Mac 0 143 96
Sum 554 530 518

> head(Sdef)

lex.id per

DO WN -
WWNN -

1 1993.326 45.
1994.180 45.
1993.326 45.
1998.946 50.
1993.326 45.
1997.655 49.

131 438 322 3677.74 412
278 1334 1138 8633.39 1000
183 422 326 2366.98 378
592 2194 1786  14678.11 1000
age tfi lex.dur lex.Cst lex.Xst allo ain
00000 0.0000000 0.8538224 Mic Norm Int 45 2013.
85382 0.8538224 7.3093112 Norm Dead Int 45 2013.
00000 0.0000000 5.6192193 Mic Norm Int 45 2013.
61922 5.6192193 14.3807807 Norm Norm Int 45 2013.
00000 0.0000000 4.3284286 Mic Norm 1Int 45 2013.
32843 4.3284286 2.1929862 Norm Mic 1Int 45 2013.

In real applications we would use 1000 replicates of each to minimize the simulation

CIror.

Now we will repeat the graph above, but for the 10 combinations of age at enrollment

(ain), and allocation:

> P45i <- nState(sub
+ at
+ from
+ time.scale

set(Sdef, ain == 45 & allo == "Int"),
= seq(0, 20, 0.1),
=0

>
Iltfi II) [’ C("NOI'III", IIMiCII’ "MaC”, HDeadH)J

This should then be repeated for 4 other ages at enrollment and the two allocations,

plus we will only store

P45c <- pState(nSt
at

from =

time.scale
P45i <- pState(nSt
at

from =

>

+

+

+

>

+

+

+ time.scale

> P50c <- pState(nSt
+ at
+

+

>

+

+

+

>

+

+

+

from =

time.scale
P50i <- pState(nSt
at

from =

time.scale
P55¢c <- pState(nSt
at

from =

time.scale

the state probabilities:

ate(subset (Sdef, ain == 45 & allo == '"Conv"),
= seq(0, 20, 0.1),

0,
= "tfi u) [, C(”NOI‘III”, ”MiC”, "Mac”, "Dead")])
ate(subset (Sdef, ain == 45 & allo == "Int"),
= seq(0, 20, 0.1),

0,
= "tfi u) [, C(”NOI‘III”, ”MiC”, "Mac”, "Dead")])
ate(subset (Sdef, ain == 55 & allo == "Conv'"),
= seq(0, 20, 0.1),

0,
= ”tfi u) [, C(”NOI‘III”, "MiC”, ”Mac”, "Dead")])
ate(subset (Sdef, ain == 55 & allo == "Int"),
= seq(0, 20, 0.1),

0,
= "tfi u) [, C(”NOI‘III”, "MiC”, ”Mac”, "Dead")])
ate(subset (Sdef, ain == 55 & allo == "Conv"),
= seq(0, 20, 0.1),

0

"tfj. u) [, C(”NOI‘III”, "MiC”, ”Mac”, "Dead")])

cens
326
326
326
326
326
326
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18.

> P55i <- pState(nState(subset(Sdef, ain == 55 & allo == "Int"),
+ at = seq(0, 20, 0.1),

+ from = 0,

+ time.scale = "tfi")[,c("Norm","Mic", "Mac", "Dead")])

> P60c <- pState(nState(subset(Sdef, ain == 55 & allo == "Conv"),
+ at = seq(0, 20, 0.1),

+ from = 0,

+ time.scale = "tfi")[,c("Norm","Mic", "Mac", "Dead")])

> P60i <- pState(nState(subset(Sdef, ain == 55 & allo == "Int"),
+ at = seq(0, 20, 0.1),

+ from = 0,

+ time.scale = "tfi")[,c("Norm","Mic", "Mac", "Dead")])

> P65c <- pState(nState(subset(Sdef, ain == 65 & allo == "Conv"),
+ at = seq(0, 20, 0.1),

+ from = 0,

+ time.scale = "tfi")[,c("Norm","Mic", "Mac", "Dead")])

> P65i <- pState(nState(subset(Sdef, ain == 65 & allo == "Int"),
+ at = seq(0, 20, 0.1),

+ from = 0

+

>
”tfi u) [, C(”NOI‘III”, "MiC”, ”Mac”, "Dead")])

time.scale

Then we can plot these:

par (mfrow = c¢(5,2), mar = ¢(3,3,1,1),
oma = ¢(0,2,1,0), mgp=c(3,1,0)/1.6)
plot (P45i, col = c("forestgreen", "orange", "red", gray(0.4)),
x1im = ¢(0,20))
plot (P45c, col = c("forestgreen", "orange", "red", gray(0.4)),
x1im = ¢(20,0))
plot(P50i, col = c("forestgreen", "orange", "red", gray(0.4)),

x1im = ¢(0,20))

plot (P50c, col = c("forestgreen", "orange", "red", gray(0.4)),
x1im = ¢(20,0))

plot (P55i, col = c("forestgreen", "orange", "red", gray(0.4)),
xlim = ¢(0,20))

plot (P55c, col = c("forestgreen", "orange", "red", gray(0.4)),
xlim = ¢(20,0))

plot (P60i, col = c("forestgreen", "orange", "red", gray(0.4)),
xlim = ¢(0,20))

plot (P60c, col = c("forestgreen", "orange", "red", gray(0.4)),
xlim = ¢(20,0))

plot (P65i, col = c("forestgreen", "orange", "red", gray(0.4)),
xlim = ¢(0,20))
plot (P65c, col = c("forestgreen", "orange", "red", gray(0.4)),
xlim = ¢(20,0))
mtext (c("Int", "Conv"), side = 3, at = c¢(1,3)/4, outer = TRUE, line = 0)
mtext (paste (seq(45,65,10)), side = 2, at = (5:1%2-1)/10,
outer = TRUE, line = 0)

+VvVVvV+V+V+FHV+IFV+FIFTVHEVEVHEYV YV YV +YV

see that the curves are quite ragged; this is the simulation errors, it would be nicer
if we simulated 1000 copies of each instead of only 100.

¢}

Detour: The previous is a lot of hard-coding, we would like to be able to easily get a
plot with only a subset of the ages. To this end it is more convenient to collect this in
an array:
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Figure 1.12: Predicted probabilities of being in each of the states for persons aged 45, 50, 55,

60 and 65 at entry, separately for the two intervention groups. W

> (clr <- c("forestgreen", "orange", "red", gray(0.4)))

[1] "forestgreen" "orange" "red" "#666666"
> (ain <- seq(45, 65, 10))

[1] 45 55 65

../graph/ms-panelb
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> (all <- levels(S5%allo))

[1] n Int" "COl’lV"

> pdef <- NArray(c(list(ain = ain,
+ allo = all),
+ dimnames (P45i)))

> str(pdef)

logi [1:3, 1:2, 1:201, 1:4] NA NA NA NA NA NA ...
- attr(*, "dimnames")=List of 4

..$ ain : chr [1:3] "45" "55" "g5"

..$ allo : chr [1:2] "Int" "Conv"

..$ when : chr [1:201] "O" "O.1" "0Q0.2" "0Q.3"

..$ State: chr [1:4] "Norm" "Mic" "Mac" "Dead"

We lose the pState class of the results, so we resort to the mat2pol function that
stacks probabilities and plots them, so we simply take the result from nState and
divide by the number in the initial state (Mic) using sweep:

> for(aa in ain)

+ for(gg in all)

+ pdef [paste(aa), gg, ,] <-

+ nState (subset (Sdef, ain == aa & allo == gg),

+ at = as.numeric(dimnames (pdef) [["when"]]),

+ from = 0,

+ time.scale = "tfi")[,c("Norm","Mic", "Mac", "Dead")]

> pdef <- sweep(pdef, 1:2, pdef[,,1,"Mic"], "/")

> par (mfrow = c(length(ain),2),

+ mar = ¢(3,3,1,1),

+ oma = ¢c(0,2,1,0),

+ mgp = ¢(3,1,0) / 1.6)

> for(aa in ain)

+ {

+ mat2pol (pdef [paste(aa), "Int" ,,], col = clr, xlim = c(0,20))

+ mat2pol (pdef [paste(aa), "Conv",,], col = clr, xlim = c(20,0))

+ F

> mtext (c("Int","Conv"), side = 3, at = ¢(1,3)/4, outer = TRUE, line = 0)
> mtext(ain, side = 2, at = (length(ain):1 * 2 - 1) / (length(ain) * 2),
+ outer = TRUE, line = 0)

1.5 Time in normo-albuminuria

We have observation time till almost 22 years, but we have predictions of state
probabilities in pdef:

> str(pdef)
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Figure 1.13: Predicted probabilities of being in each of the states for persons aged 45, 55 and
65 at entry, separately for the two intervention groups.
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num [1:3, 1:2, 1:201, 1:4] 0 0 0 0 0 0 0.04 0.05 0.01 0.01
- attr(*, "dimnames")=List of 4

..$ ain : chr [1:3] "45" "55" "g5"

..$ allo : chr [1:2] "Int" "Conv"

..$ when : chr [1:201] "O"™ "O.1"™ "0.2" "0.3"
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Practicals

IINormll IIMiCII |IMaCII llDeadll

chr [1:4]
> ftable(pdef[,,1:10,], row.vars

..$ State:

c(1,3))
Conv

Mac Dead Norm Mic

Int

allo

Mac Dead

State Norm Mic

ain when

45

0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00
0.04 0.94 0.02 0.00 0.01 0.99 0.00 0.00

1
0.2

0.05 0.92 0.03 0.00 0.03 0.96 0.00 0.01

0.13 0.84 0.03 0.00 0.04 0.95 0.00 0.01

0.3
0.4

0.5

0.14 0.83 0.03 0.00 0.04 0.94 0.01 0.01

0.16 0.80 0.04 0.00 0.06 0.92 0.01 0.01

0.16 0.80 0.04 0.00 0.07 0.90 0.02 0.01

0.6

0.17 0.79 0.04 0.00 0.08 0.89 0.02 0.01

0.7

0.16 0.79 0.04 0.01 0.09 0.86 0.04 0.01
0.19 0.75 0.05 0.01 0.09 0.85 0.05 0.01
0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00

0.05 0.95 0.00 0.00 0.00 1.00 0.00 0.00

0.8
0.9

55

1
0.2

0.06 0.93 0.01 0.00 0.00 0.99 0.01 0.00

0.08 0.91 0.01 0.00 0.02 0.96 0.02 0.00
0.09 0.89 0.02 0.00 0.03 0.94 0.03 0.00
0.09 0.89 0.02 0.00 0.03 0.94 0.03 0.00
0.09 0.89 0.02 0.00 0.03 0.94 0.03 0.00
0.11 0.87 0.02 0.00 0.03 0.94 0.03 0.00
0.12 0.86 0.02 0.00 0.03 0.93 0.04 0.00
0.13 0.84 0.03 0.00 0.03 0.94 0.03 0.00
0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00
0.01 0.98 0.01 0.00 0.00 0.96 0.04 0.00
0.03 0.95 0.02 0.00 0.00 0.96 0.04 0.00
0.03 0.95 0.02 0.00 0.00 0.95 0.05 0.00
0.03 0.95 0.02 0.00 0.00 0.94 0.06 0.00

0.03 0.94 0.03 0.00 0.02 0.91 0.07 0.00

0.3
0.4

0.5

0.6

0.7

0.8
0.9

65

1
0.2

0.3
0.4

0.5

0.05 0.92 0.03 0.00 0.02 0.90 0.08 0.00
0.09 0.87 0.04 0.00 0.02 0.89 0.09 0.00

0.6

0.7

0.11 0.85 0.04 0.00 0.03 0.88 0.09 0.00
0.10 0.86 0.04 0.00 0.03 0.87 0.10 0.00

0.8

0.9

19. We may want to compare groups by the expected time spent in the normoabuminuric

state. The expected time in a state is simply the time-integral of the probabilities, so
we can easily compute it from pdef; each probability represents an interval of length

0.1, so we just take the midpoint of the probabilities at the ends of each interval:

> mid <- function(x) x[-1] - diff(x) / 2

> pmid <- apply(pdef, c(1,2,4), mid)

> str(pmid)

num [1:200, 1:3, 1:2, 1:4] 0.02 0.045 0.09 0.135 0.15 0.16 0.165 0.165 0.175 0.205 ..
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> pyr <- apply(pmid, 2:4, sum) * 0.1
> str(pyr)
num [1:3, 1:2, 1:4] 7.1 4.78 2.31 4.37 2.31 ...
- attr(*, "dimnames")=List of 3
..$ ain : chr [1:3] "45" "55" "g5"
..$ allo : chr [1:2] "Int" "Conv"
..$ State: chr [1:4] "Norm" "Mic" "Mac" "Dead"
> round(ftable(pyrl[,,-4], col.vars = 3:2), 1)
State Norm Mic Mac
allo Int Conv Int Conv Int Conv
ain
45 7.1 4.4 8.4 10.2 2.0 2.5
55 4.8 2.3 8.8 8.1 2.3 3.1
65 2.3 0.9 7.7 6.1 2.4 2.7
These numbers are the expected time (in years) spent in each state during the first 20
years after enrollment; we see that the intervention group spend far more time in
Norm than do the conventional group.
20. The study intervention lasted some 7 years, after which time all persons were shifted

to intensive care. So we might ask the question of how long time persons spend in the
normoalbuminuric state in the period from 10 to 20 years, given that they are still
alive 10 years after enrollment.

This is particularly simple given that we have the simulated data; we can just restrict
the simulated data to the follow-up available after 10 years after enrollment.

Do this.

1.5.1 State probabilities only using time since entry; comparison

to Aalen-Johansen approach from survival

1.5.2 addCov using st2clin
1.5.3 Mortality by chol and bp

1.5.4 Limitations in using clinical measurements as

time-dependent variables without a model for the clinical
variables

1.5.5 Transitions between microvascular complications states,

one model, use stack

...comparison of smooth modeling to Cox-models, using the mstate machinery.
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