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SUMMARY
In studies designed to compare different methods of measurement where more than two methods are

compared or replicate measurements by each method are available, standard statistical approaches such
as computation of limits of agreement are not directly applicable. A model is presented for comparing
several methods of measurement in the situation where replicate measurements by each method are
available. Measurements are viewed as classified by method, subject and replicate. Models assuming
exchangeable as well as non-exchangeable replicates are considered. A fitting algorithm is presented that
allows the estimation of linear relationships between methods as well as relevant variance components.
The algorithm only uses methods already implemented in most statistical software.

Keywords: Calibration; Exchangeability; Functional model; Measurement error; Method comparison; Prediction;
Ultrastructural model; Variance component model.

1. INTRODUCTION

In epidemiological studies involving several centres, it is customary to encounter clinical measure-
ments made by several different methods, in which case we need to be able to translate measurements
between the various methods, and in particular to take account of different sources of error attached to the
methods. This will require both conversion formulae as well as estimates of variance components for the
measurement methods in question.

Similar needs arise in laboratory studies where a number of measurement methods (or machines) are
compared; sources of variation for different methods need to be quantified in order to choose between
them, and once a choice has been made the need for accurate conversions between old and new methods
are required.

1.1 A motivating example

Diabetes patients attending the outpatient clinic at Steno Diabetes Center (SDC) have their HbA1c levels
routinely measured at every visit. HbA1c is a marker for the long term glucose-regulation of patients. It is
measured as the fraction of haemoglobin being glucosylated—for normal persons the value will be around
5% and the treatment goal for diabetes patients is usually to maintain a value below 7.5%.

In connection with the purchase of a new device for measurement of HbA1c in blood samples at
the SDC laboratory, three machines (the existing,BR.VC, and two candidates,BR.V2 andTosoh) were
compared. Venous and capillary blood samples were obtained from all patients appearing in the outpatient
clinic on two consecutive days who consented to have extra blood samples taken for the experiment. 38
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patients gave consent. Samples were measured on four consecutive days on each machine, hence there
were five analysis days. All machines were calibrated every day to the manufacturers’ standards.

Measurements of HbA1c are thus classified by method (=machine×type of blood), individual
(=patient) and replicate (=day of analysis). In this case the replicates are clearly not exchangeable, neither
within patients nor simultaneously for all patients.

The aim was to help decide which machine to buy and to produce a reliable prediction between
the existing machine and the new one (whichever one was chosen). We also wanted to know about the
relationship between measurements made on venous blood samples (from the arm) and capillary blood
samples (from the ear lobe).

All pairwise plots of means over days for the six methods (three machines and two types of blood,
capillary and venous) and 38 patients are shown in Figure 1.

Our first aim is to produce conversions between methods which, unlike regression analysis, give the
same results in either direction. For example, Figure 1 shows that regressing methody =BR.V2.ven on
x =Tosoh.ven givesy = 0.34+ 0.97x, whereas the opposite regression givesy = 0.27+ 0.98x. These
regressions do not use the information from the replicate measurements or the relationships between the
other methods for the same persons. Using the methods outlined in this paper we obtain the relationship
y = 0.349+ 0.973x.

Our second aim is to estimate the components of variation in the measurements by different methods.

1.2 The Bland–Altman model

The usual approach to comparing two methods of measurement is the one given by Bland and Altman
(1986), where the device of ‘Limits of Agreement’ is explained and the so-called Bland–Altman plot is
introduced.

The Bland and Altman approach assumes that one measurement by each method has been carried
out on a number of individuals. The limits of agreement are prediction limits for the difference between
measurements by the two methods on a randomly chosen individual.

The model underlying this procedure (restricting attention to normal models) is

ymi = αm + µi + emi, emi ∼ N (0, σ 2
m) (1.1)

whereymi denotes a measurement by methodm on individuali . This leads to differences,di = y1i − y2i

being identically distributed with meanα1 − α2 and varianceσ 2
1 + σ 2

2 , independent of the averagesȳ·i if
σ1 = σ2. The so-called Bland–Altman plot (di versusȳ·i ) isused to inspect visually whether the difference
and its variance is constant as a function of the average.

This model assumes that the only difference between the methods (on the scale chosen), is that one
is offset by a constant amount from the other. The model (1.1) is formulated as a two-way analysis of
variance model which leads to a pairedt-test for equality of the mean method-levels (i.e. testing if the
difference is 0). The generalization to several methods of measurement is straightforward. If more than
two methods are involved, it is possible to identify the single variance componentsσm.

1.3 Replicate measurements

The model (1.1) can also be used if replicate measurements are present, in which case it would be
natural to expand it with an extra component of variance, separating the measurement error from the
individual×method interaction:

ymir = αm + µi + cmi + emir , cmi ∼ N (0, τ2
m), emir ∼ N (0, σ 2

m) (1.2)
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Fig. 1. Averages of HbA1c measurements for the 38 persons over five days by the six different methods considered,
compared for all pairs of methods. Each panel is a Bland-Altman plot:(y − x)/2 versus(y + x)/2—a 45◦ clockwise
rotation of they vs. x plot. The lines shown are the two regression lines. The formulae for the regression lines and
the residual standard deviations are printed in each panel.

with all the random effects assumed independent. In this model it is assumed that replicate measurements
areexchangeablewithin each method. If replicates for all methods in a particular individual are done in
parallel this assumption does not hold.

The model (1.2) is a two-way analysis of variance model with a random interaction term and separate
variances in each column. Separate variances of the interactions (τ2

m) can only be estimated if at least three
measurement methods are compared, whereas separate residual variances (σ 2

m) can always be estimated
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if replicate measurements are present. The model can be fitted by standard software packages for mixed
models.

1.4 Extensions

In the model (1.1) the interaction term is omitted and in (1.2) left unspecified, albeit random, but in
measurement method comparison studies parts of this interaction naturally belong in the systematic (fixed)
part of the model, for example by allowing methods to have deviations depending linearly on the level of
measurement,µi . This is most conveniently formulated as

ymi = αm + βmµi + emi, emi ∼ N (0, σ 2
m).

This model is overparametrized as it stands; theµs are only determined up to a linear transformation.
For two measurement methods, this is the classical problem with errors in both variables. Depending

on the ratioσ1/σ2, the optimal estimate of the line can be anything between the two traditional regression
lines. If the ratio ofσ1 and σ2 is unknown, there is no way out of this, unless we have replicate
measurements in the same individual by each method. In that case, it is possible to estimate the variances,
and hence the ‘correct’ regression line.

Another possibility for estimating in this model is to assume some distribution of theµs as, for
example, in Dunn and Roberts (1999) which leads to a structural model.

Robust and non-parametric methods are also available, mostly in the case where only two methods
are involved, see for example Passing and Bablok (1983, 1984). In the following the attention will be
restricted to situations where replicate measurements by each method are available.

In Section 2 ageneral model is introduced, in Section 3 apractical estimation procedure is outlined,
relying mainly on standard statistical methods. Section 4 deals with prediction from one method to
another. Sections 5 and 6 discuss possible extensions relaxing some of the assumptions in the general
model. In Section 7 a more detailed account of the introductory example is given. The relationship to the
ultrastructural model and its variants is discussed in Section 8.

2. A GENERAL MODEL FOR METHOD COMPARISONS

2.1 Notation and terminology

Consider the situation where a number of measurement methods are to be compared in order to quantify
the precision (sources of variation) for each of them and estimate the relationships between them. An
experiment is conducted where for eachitem (blood sample, bacterial isolate, individual, field plot,. . . ),
i = 1, . . . , I , andmethod, m = 1, . . . , M , a number ofreplicate measurements,r = 1, . . . , Rmi is
performed.

There is no assumption about the data setup being balanced—it is only assumed that the number of
methods and replicates is sufficiently large to make the model identifiable. Observations on measurements
by a particular method are assumed exchangeable within item; measurements on the same item are not
linked across methods, nor across replicates. Relaxing of these assumptions is discussed later.

2.2 Model

Assuming a linear relation among the measurement methods we can set up a model where observations by
each method are linked linearly to a common ‘true’ item value. A model of this type would thus include:
fixed effect of each item,αm+βmµi ; random item×method effect,cmi ∼ N (0, τ2

m); random measurement
error,emir ∼ N (0, σ 2

m) and independence between measurement errors.
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The variances of the random effects must depend onm, since the different methods do not necessarily
measure on the same scale, and different methods naturally must be assumed to have different variances. In
studies where different methods actually do measure on the same scale, it will be meaningful to compare
the variance components between the methods.

In mathematical terms we have

ymir = αm + βmµi + cmi + emir , cmi ∼ N (0, τ2
m), emir ∼ N (0, σ 2

m). (2.1)

Two crucial assumptions in this model are that replicate measurements are exchangeable within (method,
item) and that measurements by different methods are independent givenµi .

This is a functional model for comparison of measurement methods, similar to the model discussed by
Kimura (1992), but without any assumptions about known variance ratios. Dispensing with the assumed
knowledge of variance ratios is of course only possible because we assume replicate measurements are
available for all methods.

The number ofµi s will in most cases be fairly large compared to the total number of observations,
unless there are many replicates or methods. Despite this, in designed method comparison studies it will
not generally be reasonable to define the item parameters as random according to some distribution,
because items in many cases will be deliberately chosen to span a ‘relevant’ range of values more or
less uniformly.

2.3 Parameters of the mean

As the model (2.1) is formulated, not all parametersαm, βm, µi are identifiable. Theµs are only
identifiable up to a linear transformation:

µi �→ a + bµi ⇒
 αm �→ αm − βm

b a

βm �→ βm
b .

Since the relation between any two methods of measurement is assumed to be linear, an arbitrary one may
be taken to be the reference, with meansµi , that is transforming theµsusinga = αref, b = βref. It iseasily
seen that the resulting translation formulae between methods are invariant under linear transformation of
theµs.

3. ESTIMATION

For fixed values ofµi , the model (2.1) is a linear mixed model with separate regressions for eachm
on µi , a random effect of method×item and a residual variance. Since the variances are also specific for
each method, the model can be fitted separately for each method.

The best linear unbiased predictor (BLUP) for a specific individuali measured with methodm in this
model has the form

BLUPmir = α̂m + β̂mµi + ĉmi. (3.1)

The parameters are estimated under the assumption that theµs are the true item values. Since this is not
the case we may be able to absorb some of the random method×item interaction into the fixed part by
updating theµs.

The expression (3.1) suggests that this can be done by regressing BLUPmir − α̂m = β̂mµi + ĉmi on
β̂m through the origin with separate slope for each item and weightsσ̂−2

m . The estimated slopes will then
be the updated values of theµs.
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Thus, estimation could be performed by switching between the two formulations, fixing either set of
parameters in turn, alternating between updating(α, β, τ, σ ) andµ. This procedure will also conveniently
circumvent the identifiability problem since the two models fitted are perfectly identifiable. The estimates
of theα andβ obtained are just an arbitrary set, but the parameters linking methodsm andk, say:

αm − βm

βk
αk and

βm

βk

will be invariant under linear transformation of theµ, and hence the arbitrariness has no influence on these
parameters of interest.

3.1 Practicalities

The practical implementation of the procedure may proceed as follows:

1. Produce initial estimates ofµi e.g. as the item-means over all methods and replicates.
2. Fit a mixed model forymir with µi as covariate for eachm and a random effect ofm × i , and

compute BLUPs of the random effects,ĉmi. This is the model (2.1) assuming theµi are values of
known covariates. The variance of them× i effect as well as the residual variance should be specific
for each method.

3. Update theµ by regressing BLUPmir − α̂m on β̂m through the origin with weightŝσ−2
m .

4. Check for convergence in terms of variance parameters and mean parameters of interest, i.e.αm −
αkβm/βk andβm/βk for some fixedk. If no convergence, go to 2.

The regression on̂βm, say, should be understood as a regression on a vector of the same length as the
set of observations, with valueŝβm for all units with measurements by methodm.

If the methods are not on the same scale the algorithm can be started by regressing the item means
for each method on the first to obtain initial estimates ofα andβ and using these estimates to convert all
measurements to the same scale, where item means can be formed.

3.2 Standard errors of parameters

The standard errors of the regression parametersαm andβm produced from the random effects models
areconditionalon the estimated values of theµs, and hence are smaller than those one would obtain
by maximizing the likelihood simultaneously over both sets of parameters. The same also applies to the
estimates of theµs, but these standard errors are of less interest.

The regression parameters are not of interest by themselves, only in the formαm − αrefβm/βref and
βm/βref. The individual sets ofα andβ are conditionally independent given theµs since they are derived
from independent datasets. The dependence comes from the fact that theµs are derived from the total
dataset.

An approximate variance of the relative slopes estimated byβ̂m/β̂k can be derived by Taylor expansion
from the estimated standard errors of theβ-estimates,κm andκk, say:

v̂ar

(
β̂m

β̂k

)
≈ κ2

m

β̂2
k

+ κ2
k β̂2

m

β̂4
k

= 1

β2
k

(
κ2

m + β2
m

β2
k

κ2
k

)
.

The first term is what one would get if̂βk is taken as fixed, the second is the correction for the variance of
the denominator. This expression is invariant under rescaling of theµs; the same scaling factor will apply
both toβ andκ. It can be shown that the standard errors of theαs are also invariant under transformation
of theµs, in the sense thatαm for a givenαref will have the same standard error regardless of the scaling
of theµs prior to the transformationαm �→ αm − αrefβm/βref.
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4. PREDICTION

When comparing two methods of measurement with the intent of predicting method 1 from method
2, one may argue that the regression of method 1 on method 2 should be used, since this is based
on theconditionaldistribution of y1 given y2, which is exactly the prediction situation (Carrollet al.,
1995). However, this argument relies heavily on an assumption that the ‘new’ observation from which the
prediction is done is randomly chosen from the same population as was used for the estimation.

In practical situations this will not necessarily be the case, because prediction will typically be needed
for populations different from the one used in the calibration study. Otherwise separate calibration studies
would be needed for each population.

In most circumstances the calibration sample will (or should) be chosen to give maximal accuracy of
the comparison over the range where the conversion is to be used, so the distribution of the variable of
interest in the calibration sample is not necessarily close to the population distribution.

Predictions based on the model (2.1), assuming methods to be conditionally independent givenµi ,
should include both the measurement variationσm and the method×item variationτm, but also take the
uncertainty in the measurement of the observed value into account.

For a (new) observed value ofy2, y20, say, we have

y20 = α2 + β2µ0 + c20 + e20 ⇔ µ0 = y20 − α2 − c20 − e20

β2

which leads to predicting the measurement by method 1,y10, by

y10 = α1 + β1µ0 + c10 + e10 = α1 + β1
y20 − α2 − c20 − e20

β2
+ c10 + e10.

Hence the mean and variance ofy10 conditional ony20 is

E(y10) = α̂1 + β̂1

β̂2
(y20 − α̂2), V(y10) =

(
β̂1

β̂2

)2

(τ̂2
2 + σ̂ 2

2 ) + (τ̂2
1 + σ̂ 2

1 ) (4.1)

so the prediction variance depends both on the variance on the scale of the predictee as well as on the scale
of the predictor. This kind of prediction interval has the property that it will produce a set of prediction
bounds in a(y1, y2)-plot which is the same regardless of whethery1 is predicted fromy2 or vice versa—
the slope of the line linkingy1 with y2 is β1/β2 so the vertical distance between two lines with this slope
is β1/β2 times the horizontal, which is exactly the ratio of the standard deviations used in prediction in
the two directions.

4.1 Incorporating the estimation variance

By analogy with the classical prediction problem from linear regression it is not only the estimated
variance that should be used, we should add the variance of the estimated mean,α̂1 + (β̂1/β̂2)(y20 − α̂2).
If �̂ is the 4× 4 estimated covariance matrix of(α̂1, β̂1, α̂2, β̂2) (conditional on the estimated values of
µi ), then the variance of the prediction mean,f (α̂1, β̂1, α̂2, β̂2) = α̂1 + (y2i 0 − α̂2)β̂1/β̂2 is

Df T �̂ Df =
(

1,
(y2i 0 − α̂2)

β̂2
, − β̂1

β̂2
,
−β̂1(y2i 0 − α̂2)

β̂2
2

)
�̂


1

(y2i 0 − α̂2)/β̂2

−β̂1/β̂2

−β̂1(y2i 0 − α̂2)/β̂
2
2

 .
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Since methods are assumed independent given true value ofµi , the matrix� will be block-diagonal with
2 × 2 blocks along the diagonal:

� =


κ2

a1 ρ1κa1κb1 0 0
ρ1κa1κb1 κ2

b1 0 0
0 0 κ2

a2 ρ2κa2κb2

0 0 ρ2κa2κb2 κ2
b2

 .

This is not quite true, because the correlation between parameters from different methods induced by the
µi in the model is ignored, but the approximation is reasonable to see if the uncertainty in (α,β) has any
effect on the prediction.

However, if a method comparison study is carefully designed and adequately sized, these corrections
will be of minimal importance for the conclusions of the study.

4.2 Prediction based on replicate measurements

If there arek replicate measurements ofy2 available, the prediction ofy1 should then be based on the
average of these,̄y20·. Under the model, the average of the measurements will contain only one value of
c20, butk values ofemir , so the variance contribution for̄y20· will be(

β1

β2

)2
(

τ2
2

k2
+ σ 2

2

k

)
.

5. RELAXING THE EXCHANGEABILITY ASSUMPTION

The model 2.1 assumes that replicates on the same item are exchangeable within method. This can be
ahighly unrealistic assumption, e.g. when replicates for technical or logistic reasons are made on separate
days or in batches of some kind. In this situation it is reasonable to introduce a random method×replicate
effect (i.e. a method by day/batch effect), which leads to the model

ymir = αm + βmµi + cmi + dmr + emir , cmi ∼ N (0, τ2
m), dmr ∼ N (0, ω2

m), emir ∼ N (0, σ 2
m).

(5.1)

The expression for the predictions under the model (5.1) will be the same as those given for the model
(2.1), but the expressions for the prediction variance will include extra terms,ω1 andω2, stemming from
the random item×replicate interaction.

There is no reason to restrict the method×replicate interaction to be entirely random, one may take
part of it as fixed. If for example there is a suspicion that the quantity measured decays by day of analysis,
d say, appropriate models could be

ymir = αm + βm(µi + δd) + cmi + dmr + emir

or

ymir = αm + βm(µi + δmd) + cmi + dmr + emir ,

depending on whether the effect was believed to be different between methods or not.

6. RELAXING THE CONDITIONAL INDEPENDENCE ASSUMPTION

The assumption of independence between methods given item may be unrealistic if items represent
plots of an experiment and replicates are subsamples from each plot. In this case measurements on the
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same item are linked within replicate, so modelling an item×replicate interaction would be appropriate,
e.g. by including a random effect for each combination of item and replicate.

But as the model should allow methods to measure on different scales, so the random effect cannot be
on the measurement scale, but must be on theµ-scale:

ymir = αm + βm(µi + air ) + cmi + emir , air ∼ N (0, ν). (6.1)

This model introduces a correlation between observations by different methods on the same item, derived
from the linking of replicates across methods (within plots, for example). This correlation is structured
by the non-exchangeability of replicates within methods, so that observations by different methods on the
same (item, replicate) will be correlated.

An alternative specification for the correlation between measurements by different methods would be
to relax the independence assumption for the matrix effects by specifying

cov(cmi, cki ) = ρmkτmτk (6.2)

The structure of this model is most easily compared to the models (5.1) and (6.1) by noting the assumed
covariances for the observations:

Model (2.1) (5.1) (6.1) (2.1) + (6.2)
cov(ymir , ykir ) 0 0 βmβkν

2 ρmkτmτk

cov(ymir , ymjr ) 0 ω2
m 0 0

cov(ymir , ymis) τ2
m τ2

m τ2
m τ2

m

The extension in (6.2) is more flexible than that in (6.1), becauseM(M −1)/2 variance parameters are
introduced into the model in addition to the 2M already there. This is a substantial extension of the number
of variance parameters, and will probably require massive amounts of data just to produce reasonably
reliable estimates of theρmk. It will not be possible to estimate in this model using the algorithm outlined
above.

The model (6.1) only introduces one additional parameter,ν2. If there is a special structure to the
replicates it would in principle be possible to extend (6.1) by specifying var(air ) = ν2

r .
For model (6.1) the BLUP-based iterative estimation method does not carry over immediately.

Suppose that theµs and theas are known and that the resulting random effects model has been fitted,
then

BLUPmir = α̂m + β̂m(µi + air ) + ĉmi = α̂m + β̂mµi + β̂mair + ĉmi.

A modification of the proposed algorithm would then be to fit a model for BLUPmir −α̂m with a fixed term
consisting of separate regressions for eachi on β̂m (giving estimates of theµ) and a random regression on
β̂m with the item×replicate cross-classification as the factor, giving updated values of theair as BLUPs
from the model

zmir = BLUPmir − α̂m = µi β̂m + air β̂m + emir

fitted with σ̂−2
m as weights.
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Table 1. Estimates of variance components for the three
different methods. The scale is the standard deviation, i.e.
HbA1c%. The sum is the square root of the sum of the squares

of the threestds

τ ω σ sum
(matrix effect) (day to day) (residual)

BR.V2.Cap 0.163 0.166 0.092 0.250
BR.VC.Cap 0.132 0.030 0.077 0.156
Tosoh.Cap 0.113 0.049 0.071 0.142
BR.V2.Ven 0.152 0.093 0.075 0.193
BR.VC.Ven 0.140 0.020 0.045 0.148
Tosoh.Ven 0.107 0.032 0.060 0.127

7. EXAMPLE: MEASUREMENT OFHBA1c AT SDC

Wenow return to the experiment comparing methods for measurement of HbA1c at SDC. The layout of
the experiment involves three machines and two types of specimen, constituting methodsm = 1, . . . , 6;
individuals i = 1, . . . , 38 and replicate=dayd = 1, . . . , 5. The replicates in this experiment are not
exchangeable, so it is necessary to include a day×method interaction (separate effect of calibration for
each machine):

ymid = αm + βmµi + cmi + dmd + emid cmi ∼ N (0, τ2
m), dmd ∼ N (0, ω2

m), emid ∼ N (0, σ 2
m).

Wemight as well have specified them× d effect as fixed and estimated the parameters associated with it.
We chose to include some of the effect in the fixed part to accommodate systematic changes in measured
levels by time (t) since sampling:

ymid = αm + βm(µi + δmt) + cmi + dmd + emid.

This has the consequence that the prediction between methods depends on the day of measurement.
From a formal point of view, the variance components cannot be compared in this model, because

the measurementsymir are allowed to be on different scales. However since the measurements in this
case actuallyareon the same scale (%HbA1c) the comparison makes sense. The variance components are
invariant under the linear transformations of theα andβ that leaves the model intact, but the values ofδm

are dependent on the chosen parametrization (i.e. scaling of theµ).
The old existing machine at SDC was theBR.VC, so the choice was betweenBR.V2 and Tosoh.

From Table 1 it is seen that theTosoh has slightly smaller variance components overall. Of particular
interest here is the residual variance representing the repeatability and the method by replicate interaction
representing the reproducibility, both of which are seen to be smallest, i.e. best, forTosoh, in particular
the latter. Repeatability and reproducibility are further discussed below.

A precise evaluation of whether this is significant or not would require construction of confidence
intervals for the variance components. This could be performed by bootstrapping.

The results for the means to be used for future conversions are given as a table with corresponding
prediction standard deviations, Table 2 referring to day one after sampling. Entries in this table are used for
conversion of clinical measurements, to ensure comparability of measurements within individual patients
attending SDC in the transition from the old machine to the new, and to convert between measurements
made on venous and capillary blood.
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8. DISCUSSION

The models presented here have predecessors that look almost the same, as well as some less related
approaches that are mainly designed for use in the case of comparing only two methods with one
measurement by each method. The latter are not discussed here, as we only aim at providing modelling
tools for use in situations where a comparison experiment with replicates has been conducted.

As stated in equation (2.1), the simplest model is an extension of the functional model (for data without
replications) discussed by Kimura (1992). The estimation procedure outlined is also very similar to the
EM-algorithm proposed by Kimura, but because of the replicates and the extra variance components the
estimation of theµ is not a formal E-step, but an estimation of a subset of the parameters conditional on
another subset. Barnett (1970) discusses a structural model for data with replications where the variances
are allowed to vary by item, i.e. var(emir ) = σmi, but with the restriction that the ratiosσmi/σki were
independent ofi .

Generally, data from a method comparison study can be arranged in a three-way array classified by
method, item and replicate. Since we are dealing with measurements on potentially different scales, any
variance component involving method must be allowed different variances across methods.

The pure measurement error will be the three-way interaction in this layout. If replicates are
exchangeable it will be the within-cell variation in the two-way array classified by item and method. The
three possible two-way interactions can in principle all be estimated, but it is a subject matter decision
whether they should enter the model and to what extent they should be included as random or fixed effects.

The method×item interaction is usually split into a parametric part, corresponding to the specification
of the linear relationship between methods, and a random method×item effect (matrix effect).

If replicates are non-exchangeable, for example because of simultaneous calibration of machines or
batch processing, then a method×replicate interaction should be included, either as random or fixed, or as
amixture of both.

In method comparison studies, where items are physical entities like plots and replicates are
subsamples within plots, replicates are made in parallel within items. It may then be necessary to include
an item×replicate interaction. Because of the different scales for measurements this interaction cannot be
included on the measurement scale, but must be on theµ-scale.

8.1 Interpretation of variance components and choice between methods

Throughout it has been assumed that measurements are independent between items given the ‘true’ value
µi . The estimates of theµsare essentially weighted means of the measurements by the methods involved.
Hence, if some of the methods agree closely because they are subject to the same sources of noise they
may dominate theµs.

The variance components are therefore only meaningful under the assumption that the methods
compared are measuring the same thing, and that the mean over the methods compared has a sensible
interpretation. If for example three methods using one technique for measuring are compared with one
method using a different technique, there is a risk of assigning a large variation of the item×method
effect to the latter, because of agreement of the item×method effects among the three first. As an extreme
example of this, consider a situation where a number of identical methods are compared to one of a
different type. The interaction terms for the method×item effects would then be more similar between the
three identical machines and would tend to be absorbed in the item parameters (theµs). This would lead
to small estimates of the random method×item terms for the three similar methods and larger ones for the
last (differing) method, thus giving small variances for the similar methods purely because of the set of
methods used.
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This is essentially an unidentifiability feature of the method×item interaction. The ‘true’ matrix effects
are not estimable in a design such as the one outlined, but will be confounded with the item parameters
(theµs).

If a method×replicate effect is included in the model, similar problems may appear if e.g. daily
calibrations are more similar between some methods than others.

The estimates of residual variation are obtainable because they are based on variation between
replicates within (item, method).

If replicates are not exchangeable, the method×replicate interaction will represent the reproducibility
(ISO 5725-1, 1994), that is the variation between measurements on the same item by the same method
under different circumstances (typically, different laboratories). The residual variation will be the
repeatability, that is the variation between measurements made on the same item under similar conditions
(same method, machine, laboratory, technician). It should be noted that the definitions of repeatability
and reproducibility are to some extent subject-matter related, for example with respect to what one would
deem to be the ‘same equipment within short intervals of time’ (ISO 5725-1, 1994).

If replicates are exchangeable, the reproducibility is not available since observations on the same item
with the same method under different conditions are not made. The repeatability will be either the residual
variation or the sum of the residual variation and the method×replicate variation, depending on the nature
of the replications.

If more precise estimates of repeatability and reproducibility were required, one might consider a more
complex replication scheme, with some replicates under identical and some under differing conditions.
The modelling in this kind of design would in principle be possible along the same lines as described here,
for example by incorporating systematic effects in the description of replicates.

The systematic part of the method×item interaction is the linear relationship between the methods,
which also link the scales of the methods (ymi = αm + βmµi ). Hence, in the comparison of variance
components between methods it is necessary to rescale in order to make the comparisons meaningful, e.g.
by using terms such asτm/βm, σm/βm etc. In many practical settings where methods measuring on the
same scale are compared, all theβ will be close to 1 (or more precisely, will be similar) so the rescaling
of variance components will have little effect on the comparisons.

In summary, the residual variance and the method×replicate interactions will be the variance
components of major interest since they represent the repeatability and reproducibility of the methods
(depending on the replication scheme), whereas the method×item interaction, the matrix effects, should
be used with some care in the comparison of methods because the relative sizes of these between methods
may be influenced by the set of methods compared.

8.2 The ultrastructural model and variants

The ultrastructural model was proposed by Dolby (1976) for repeatedpairs of measurements with two
different methods on itemi : (

xi

yi

)
, i = 1, . . . , I ,

and possibly replicates for each item.
In this model, observations by the same method of measurement on the same item arenot

exchangeable. But the non-exchangeability is due to simultaneous measurement by all methods for each
item, which is modelled by a random item×replicate effect,air :

xir = µi + air + eir 1
yir = α + β(µi + air ) + eir 2

air ∼ N (0, φ), eirm ∼ N (0, σ 2
m) (8.1)
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leading to the joint distribution:(
xri

yri

)
∼ N

{(
µi

α + βµi

)
,

(
φ + σ 2

1 βφ

βφ φ + σ 2
2

)}
i.e. with correlation within pairs of measurements for thesame i.

This model assumes correlation between measurements from different methods within item derived
from random effect for both measurement methods, i.e. a random effect associated with the replication
of the pair of measurements. Thus, in the ultrastructural model replicates are not linked between items
within method, but between methods within item, as opposed to the model (2.1).

Rephrasing the ultrastructural model in the spirit of (2.1) by puttingxir = y1ir , yir = y2ir , α1 = 0
andβ1 = 1 we have

ymir = αm + βm(µi + air ) + emir air ∼ N (0, φ), eirm ∼ N (0, σ 2
m) (8.2)

which is the model (6.1) without the item×method interaction. Here the random effect of replicate is on
theµ-scale, i.e. its effect is proportional toβ.

The ultrastructural model of Dolby is discussed in a practical setting by Skovgaard (1995) where
two methods of measuring flavours in beef are compared over a number of different storage times,t
(corresponding to items in the notation in this paper), with replicates being different packs of beef. The
random item×replicate is thus a random time×pack effect. The reason for choosing this structure of
the model is not quite clear, since the replicates are not subsamples in the sense outlined as example in
Dolby’s paper. The argument seems to be that packs may age differently. Skovgaard estimates the slope
in the ultrastructural model by the ratio of the canonical correlations from a model with storage time as a
categorical covariate, i.e. explicitly estimatingµt in a one-way ANOVA and then using the residuals for
estimation of the variance.

The structural model is discussed by Dunn and Roberts (1999) This is a simplification of the
ultrastructural model where theµi are assumed to come from a normal distribution with a common mean:

ymi = αm + βmξi + emi, ξi ∼ N (µ, φ), emi ∼ N (0, σ 2).

The distributional assumption for theξ induces the correlation between measurements by different
methods on the same item. Note that the estimation procedures proposed for this model involves the
population variance of the measurements (the variation of the item means,φ). This seems strange, because
amethod comparison study ideally should produce results independent of the population of items used.

8.3 Summary

Models for method comparison studies should refer to the data layout and in terms of the subject matter
address carefully (1) what effects should be included in the model and (2) whether they should be included
as random or fixed. In particular it is not advisable to focus on problems of identifiability of parameters,
but rather on model structure.

In reporting results from method comparison studies is important to put the results in an immediately
applicable form as conversion tables or charts between methods with proper prediction standard
deviations. Further, the size of the variance components should be reported in a form that makes it possible
to use the information for comparison of precision between methods.
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