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13:30 – 14:30 Lecture 2: Introduction to MCMC and the BUGS programming language.
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of restricted uniform or beta prior distribution with narrow prior support for a
range of parameters values. (BxC/SH)
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09:30 – 10:00 Lecture 3: Demonstrating the Gibbs sampler with a multiparameter problem
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Chapter 1

Introduction to computing and
practicals

The course is both theoretical and practical, i.e. the aim is to convey a basic understanding of the
Bayesian framework for data analysis as well practical computing skills in Bayesian methods. The
two components of the course are supposed to support each other.

The practicals during the week will take place in computer labs, but the most convenient will
be if you work on your own laptop for the practicals. This will ensure that useful scripts and trics
are readily available for your future exploitation.

In the following is a brief overview of the software and other files you must download if you
want to use your own computer.

1.1 Software

1.1.1 Overview

In this course, we use the Markov Chain Monte Carlo (MCMC) machinery which is implemented
in various guises of BUGS. The original purpose of the software BUGS was to use it for Bayesian
inference, but in many practical circumstances it is used with flat or (almost) uninformative prior
distributions to effectively perform maximum likelihood inference.

The latter type of application is the main content of this course. But this use of the sotware
still requires a basic knowledge of Baesian statistics.

The data manipulation and report generation is done with R in this course, as this is the state
of the art in practical statistics. In order to avoid direct interaction with the BUGS programs, this
course will use the R2WinBUGS interface, which basically throws R datastructures at the BUGS
program and sucks the results back into R. This enables you to maintain a completely
reproducible record of your initial data-manipulation (in R), estimation (in BUGS) and reporting of
results (in R).

There are two version of BUGS we shall be using — you can choose which one suits you better
— WinBUGS or OpenBugs. The scritping language is the same for the two, but WinBUGS is a
separate program that is fired up and closed down from within R, whereas OpenBugs comes as an
R-package, BRugs, that is operated entirely inside R.

In order to be able to write scripts (programs) in R and keep them for future use (and
modification for other purposes) a good editor with interface to R is convenient. Tinn-R is the
answer. (Tinn = Tinn Is Not Notepad). If you are already a user of ESS, just forget about
Tinn-R.

So you need R, BUGS and (possibly) Tinn-R.

1



2 PDAwBuR: Computing

1.1.2 What to get

• Tinn-R is available from http://sourceforge.net/projects/tinn-r.

• R, version 2.7.1, get it from http://mirrors.dotsrc.org/cran/. The relevant packages for
this course are easiest installed by fireing up R, and then type:

> install.packages("R2WinBUGS","Brugs","coda","Epi")

You will be asked to select a mirror (i.e. a computer) from which to download the stuff).
The R2WinBUGS is the package that handles the interface to BUGS, BRugs is the OpenBugs
program encapsulated in an R-package, coda is a package for post-processing and
monitoring of MCMC-output, and Epi is a package for epidemiology from which we will use
a few handy functions.

• WinBUGS from http://www.mrc-bsu.cam.ac.uk/bugs/.

(If you have set your mind on using OepnBugs from BRugs, you can skip this section).

You should get the update to 1.4.3, and a licence key for unrestricted use of WinBUGS. The
licence key is free and will be sent to you by e-mail, or you can get it here:
http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/WinBUGS14_key_31_12_2008.txt. It is
just a plin text file that you have to paste into a certain window in WinBUGS. Without this
licence key you cannot use WinBUGS for the practicals in this course, as you will experience
limitations on the size of problems you can handle..

1.1.3 How to install and fine-tune

1.1.3.1 Tinn-R and R

R can run in two different ways on your computer: MDI or SDI. MDI is “multiple display
interface”, where the command window, graph, R-editor and help windows all are sub-windows in
a master-window. This is the default and is not supported from Tinn-R. In order to get R to start
in SDI (“single diaplay interface”) mode where each window is stand-alone you must edit the
Rconsole file that is located in the folder c:/Program Files/R-2.7.1/etc. It is pretty
self-explanatory what is in that file; so you must put MDI=no. You may also wish to change the
colors of the command screen to less eye-straining colors, e.g.:
> background = gray7
> normaltext = yellow2
> usertext = green
> highlight = white

You can also change the default font size by editing this file.

1.2 Course material

Datsets and programs for the course are all collected in the zip file BDA2008.zip available at the
course homepage, www.biostat.ku.dk/~bxc/Bayes/Cph-2008/. Download this file and unpack it
in a separate folder. The resulting folder tree has the following subfolders:

• Data — datasets for use in the practicals.

• R — example R-programs providing solutions to some of the practicals, as well as the file
PDAwBuR.r which contains a couple of ad-hoc R-functions that should be handy in some of
the exercises.

At the root level you should find this document, including solutions to the exercises.

http://sourceforge.net/projects/tinn-r
http://mirrors.dotsrc.org/cran/
http://www.mrc-bsu.cam.ac.uk/bugs/
http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/WinBUGS14_key_31_12_2008.txt
www.biostat.ku.dk/~bxc/Bayes/Cph-2008/
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1.3 Simulating data in R

One of the major uses of computers in this course is simulation, a brief section on this is include
here.

Start by opening R. In the following, “>” is the R-prompt, and “+” the continuation prompt, and
these should not be typed. The lines starting with “[1]”, “[8]” etc. are output from R, that you
can use to check that you got the right output. Since this is about simulation, you will of course
not get exactly the same output as shown here.

To simulate binomial variates Y ∼ Bin(N, p), the function to use is rbinom. To simulate n = 1
observation from one experiment of size N = 10 and a probability of success p = 0.2, try the
following:
> rbinom(n=1,size=10,prob=0.2)

[1] 2

In many cases we want to make such simulations several times. To conduct the experiment, say
15 times we can do:
> rbinom(n=15,size=10,prob=.2)

[1] 2 2 3 4 2 2 2 0 4 0 1 2 3 2 3

Sampling from a Bernoulli distribution (which is just a Bin(1, p)–distribution) is therefore
achieved by
> rbinom(n=15,size=1,prob=.2)

[1] 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0

or simply
> rbinom(15,1,.2)

[1] 0 0 1 1 0 0 0 1 0 0 1 0 1 0 0

For more information on rbinom type ?rbinom. Similarly, random normal and Poisson variates
are generated using rnorm and rpois. For information on these, type ?rnorm or ?rpois.

If you want to take a random sample from the elements of a vector you need the function
sample. First look at the vector from 1 to 10:
> 1:10

[1] 1 2 3 4 5 6 7 8 9 10

> sample( 1:10, 8, replace=T )

[1] 7 7 4 2 7 5 6 4

Here we took a sample of 8 from the vector (1, 2, . . . , 10), with replacement. If you want a sample
without replacement, just do:
> sample( 1:10, 8 )

[1] 9 8 6 4 5 10 3 7

If you omit the second argument, you just get a permutation of the argument:
> sample( 1:10 )

[1] 3 7 2 5 8 6 1 4 10 9

> sample( 1:10 )

[1] 7 4 6 5 8 10 1 3 2 9
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1.4 Distributions in R

All the standard distributions are avialble in R; for example the normal distribution density is
called by dnorm, the cumulative distribution is called pnorm, the invers of this qnorm, and a
random sample from it generted by rnorm.

In general any distribution has these four functions associated with it.
There is a function in the MASS library (which is by defualt included in any R-installation) to

generate random samples from a multivariate normal distributioon, mvrnorm.

1.5 Using the interface to BUGS

This brief “Practice 0” is to get you familiar with the practicalities around running BUGS from
within R and making sure that the installation on your computer works. It is not a proper
exercise but meant for use as a check of your computing installation.

We are going to analyze the annual number of airline fatalities using a simple Poisson model
and use this model to predict the future number of fatalities. This corresponds to the first part of
exercise 6.

First get the data and take a look at it:
> airline <- read.csv( "../data/airline.csv" )
> airline

year1975 year fatal miles rate
1 1 1976 24 3.863 6.213
2 2 1977 25 4.300 5.814
3 3 1978 31 5.027 6.167
4 4 1979 31 5.481 5.656
5 5 1980 22 5.814 3.784
6 6 1981 21 6.033 3.481
7 7 1982 26 5.877 4.424
8 8 1983 20 6.223 3.214
9 9 1984 16 7.433 2.152
10 10 1985 22 7.107 3.096
11 11 1986 22 9.100 2.418
12 12 1987 25 10.000 2.500
13 13 1988 29 10.600 2.736
14 14 1989 29 10.988 2.639
15 15 1990 27 10.880 2.482
16 16 1991 29 10.633 2.727
17 17 1992 28 11.956 2.342
18 18 1993 33 12.343 2.674
19 19 1994 27 13.011 2.075
20 20 1995 25 14.220 1.758
21 21 1996 24 16.371 1.466
22 22 1997 26 15.483 1.679
23 23 1998 20 18.080 1.106
24 24 1999 21 16.633 1.263
25 25 2000 18 18.875 0.954
26 26 2001 13 19.233 0.676

We shall only be interested in the column fatal which contains the annual number of fatalities.
We use the following model to describe the number of fatalities in year i, yi:

yi|µ ∼ Poisson(µ), µ ∼ Γ(0, 0)

The Γ(0, 0) is really the uniform distribution on (0,+∞), (so an improper prior), but it will work,
as the posterior for µ will be Γ(0 +

∑
yi, 0 + n) where n is the number of observations, in this case

26, and
∑
yi = 634.
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Since we know the posterior distribution, we can compute the mean and median of this by
simulating a sample of say 1000 from it:

> ( mn <- mean( xx <- rgamma( 10000, 634, 26 ) ) )

[1] 24.38316

> ( md <- median( xx ) )

[1] 24.36896

We can also draw the posterior distribution for µ, with indication of the mean and median:

> curve( dgamma( x, 634, 26 ), from=20, to=30, lwd=4 )
> abline( v=mn, col="red" )
> abline( v=md, col="blue" )

1.5.1 Using BUGS via bugs()

In order to run BUGS we must of course supply the data, but also a BUGS program as well as a
couple of other things.

Data The first thing to provide to BUGS is the data. This is also provided in the form of a named
list, one element per data-structure (usually vector or matrix). In this case we provide the
vector of fatal airline accidents expanded with a NA for prediction of the number in 2002, as
well as the total number of observations:

20 22 24 26 28 30

0.
0

0.
1

0.
2

0.
3

0.
4

x

dg
am

m
a(

x,
 6

34
, 2

6)

Figure 1.1: The posterior distribution for mu. Mean is the red line, median the blue.
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> a.dat <- list( fatal = c(airline$fatal,NA), I=27 )

Program The program (BUGS code) must be put in a separate file which is then read by BUGS.
When working in R this is most conveniently done using the R-function cat() which
behaves pretty much like paste() with the exception that the result is written to a file you
specify. If you specify file="" the output comes on your screen.

Here is the BUGS code specifying the above model, using cat to put it in the file m1.bug:

> cat( "model
+ {
+ for( i in 1:I )
+ {
+ fatal[i] ~ dpois(mu)
+ }
+ mu ~ dgamma(0,0)
+ }",
+ file="m1.bug" )

The code refers to data points in the variable fatal which is I long. The BUGS code is
declarative, i.e. it is not executed as the program runs. Instead it is a specification of the
model structure, and after the model is set up it is decided how best to go about the
MCMC-simulation. So it would not matter if the specification of a prior ofr mu was put
befor the for statement. Also the loop is just a compact way of writing fatal[1]
dpois(mu), fatal[2] dpois(mu), fatal[3] dpois(mu) etc.

We could have replaced I with the number 27 in the code if we wanted. In that case the I
in the data would have been superfluous, and you would get an error if you supplied the
variable I — OpenBugs may even cause your entire R-session to exit without further ado if
you supply variables in the data not used in the program.

Starting values To start the MCMC simulation we will normally supply some starting values
(but in most cases BUGS will be able to generate them). In order to be able to monitor
convergence we will normally run several chains, so we must supply starting values for each
chain. The starting values for one chain is a named list, names are the parameters used in
the model. Here we use three chains, hence the initial values is a list of three lists. Each of
these list has as elements one named value for each parameter — in this case there is only
one parameter µ, called mu in the BUGS program:

> a.ini <- list( list( mu=22 ),
+ list( mu=23 ),
+ list( mu=24 ) )

Parameters to monitor We must also specify the variables (nodes) that we want to monitor,
this is done using the argument parameters.to.save (which can be abbreviated to param).

Simulation parameters Running the MCMC simulation via bugs also requires that we specify
the (total) number of simulations (n.iter), the number of burn-in iterations (n.burnin),
and the frequency of sampling for the simulations after the burn-in (n.thin). In the
following example we run the chain for 3000 iterations, and use the first 2000 as burn-in and
then sample every fifth, giving us a sample of 200 values from each if the 3 chains.

1.5.2 Results

Results from a MCMC sampling is a random sample from the joint posterior distribution of the
parameters (“nodes”) that have been monitored during running of the chain(s). This will normally
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be represented in a matrix with one column for each parameter and one row for each sample,
represented in the coda package as a mcmc object. This is a matrix with a bit of extra structure,
but primarily there are a number of meningful functions associated with it (“method”s), notably
summary and plot.

When we run more than one chain (which is the recommended approach) we wil have a number
of such objects. These are represented in the coda package as mcmc.list objects. A mcmc.list
object is basically just a list of mcmc objects. This also has a set of useful methods associated,
such as summary, plot, varnames, and a range of plotting functions such as xyplot, densityplot
and acfplot designed to monitor convergence of chains.

Because of the wide selection of methods for mcmc.list objects we encourage you to convert all
results from MCMC simulations to mcmc.list objects.

Now we can run BUGS in three different ways:

• Using WinBUGS returning a bugs object.

• Using WinBUGS returning a text-string giving the names, enabling other programs to read
the posteriors from the generated files.

• Using BRugs returning a bugs object.

For the two first options it is necessary to specify the path to the installation library for WinBUGS.
Also note that we enclosed all calls in a system.time() command to see how long each of them

takes; it is only the last of the three numbers that is relevant, because R is not monitoring the
time that WinBUGS is using.

> # Winbugs installation directory
> bd <- "c:/stat/bugs/winbugs14"
> # Using WinBUGS creating a bugs object
> system.time(
+ m1.wb <-
+ bugs( data = a.dat,
+ inits = a.ini,
+ param = c("mu","fatal[27]"),
+ model = "m1.bug",
+ n.chains = 3,
+ n.iter = 3000,
+ n.burnin = 2000,
+ n.thin = 5,
+ bugs.directory = bd,
+ debug = FALSE,
+ clearWD = TRUE ) )

user system elapsed
0.08 0.00 6.19

> class( m1.wb )

[1] "bugs"

> # Using WinBUGS and converting to coda-format using codaPkg = TRUE
> system.time(
+ m1.coda <-
+ bugs( data = a.dat,
+ inits = a.ini,
+ param = c("mu","fatal[27]"),
+ model = "m1.bug",
+ n.chains = 3,
+ n.iter = 3000,



8 PDAwBuR: Computing

+ n.burnin = 2000,
+ n.thin = 5,
+ bugs.directory = bd,
+ codaPkg = TRUE,
+ debug = FALSE ) )

user system elapsed
0.02 0.01 2.32

> class( m1.coda )

[1] "character"

> # Using OpenBUGS via the BRugs-package: bugs.directory is superfluous
> system.time(
+ m1.brugs <-
+ bugs( data = a.dat,
+ inits = a.ini,
+ param = c("mu","fatal[27]"),
+ model = "m1.bug",
+ n.chains = 3,
+ n.iter = 3000,
+ n.burnin = 2000,
+ n.thin = 5,
+ program = "openbugs",
+ debug = FALSE,
+ clearWD = TRUE ) )

Initializing chain 1: Initializing chain 2: Initializing chain 3: user system elapsed
0.33 0.04 0.94

> class( m1.brugs )

[1] "bugs"

Currently there is no uniform way of converting a bugs object to a mcmc.list object, but in the
course folder (in the file PDAwBuR.r) is a function that reads any kind of output from bugs into a
mcmc.list object:
> source("../r/PDAwBuR.r")
> mcmc.list.bugs

function( x, ... )
{
if (!is.R() && !require("coda"))

stop("package 'coda' is required to use this function")
if( is.character(x) )

res <- mcmc.list(lapply(x,
read.coda,
index.file = file.path(dirname(x[1]),

"codaIndex.txt"), ...))
if( inherits(x,"bugs") )
{
zz <- list(list())
aa <- x$sims.array
for( i in 1:(dim(aa)[2]) )

{
tmp <- mcmc( aa[,i,] )
zz <- c( zz, list(tmp) )
}

res <- mcmc.list( zz[-1] )
}

res
}
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> # Convert them all to mcmc.list objects:
> mc.wb <- mcmc.list.bugs( m1.wb )
> mc.coda <- mcmc.list.bugs( m1.coda )

Abstracting deviance ... 200 valid values
Abstracting fatal[27] ... 200 valid values
Abstracting mu ... 200 valid values
Abstracting deviance ... 200 valid values
Abstracting fatal[27] ... 200 valid values
Abstracting mu ... 200 valid values
Abstracting deviance ... 200 valid values
Abstracting fatal[27] ... 200 valid values
Abstracting mu ... 200 valid values

> mc.brugs <- mcmc.list.bugs( m1.brugs )
> str( mc.brugs )

List of 3
$ : mcmc [1:200, 1:3] 23.7 25.1 23.7 23.3 26.3 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:3] "mu" "deviance" "fatal[27]"
..- attr(*, "mcpar")= num [1:3] 1 200 1
$ : mcmc [1:200, 1:3] 23.6 23.6 24.3 25.5 24.6 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:3] "mu" "deviance" "fatal[27]"
..- attr(*, "mcpar")= num [1:3] 1 200 1
$ : mcmc [1:200, 1:3] 25.3 24.8 26.4 23.7 23.3 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:3] "mu" "deviance" "fatal[27]"
..- attr(*, "mcpar")= num [1:3] 1 200 1
- attr(*, "class")= chr "mcmc.list"

Once the objects are converted into mcmc.list objects you have access to a number of tools for
summarizing the results and checking the convergence of the chains.

As always in R, there is a summary function:

> summary(mc.brugs)

Iterations = 1:200
Thinning interval = 1
Number of chains = 3
Sample size per chain = 200

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
mu 24.40 0.970 0.0396 0.03939
deviance 156.23 1.445 0.0590 0.05719
fatal[27] 24.68 5.178 0.2114 0.20937

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
mu 22.64 23.78 24.37 24.98 26.41
deviance 155.24 155.32 155.62 156.58 160.70
fatal[27] 15.00 21.00 25.00 28.00 35.02
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It is possibile to explore the traces of the chains by the function xyplot (if you want to access the
help-page use ?xyplot.mcmc; ?xyplot will give you the help-page for the basic lattice function):

> print( xyplot( mc.wb, main="WinBUGS direct" ) )

These plots use the lattice machinery for generating plots; it is only in interactive mode you can
use the functions alone. If you want output on a file you must print them in order to get the
plots onto a file, hence the print() surrounding the call of xyplot above.

> print( xyplot( mc.coda, main="WinBUGS via coda" ) )

A closer look at the traces of these two simulations will reveal that although run by two different
simulations of WinBUGS they are identical. If you want a different starting point for the simulation
you must supply a seed via the bugs.seed.

> print( xyplot( mc.brugs, main="BRugs" ) )

Clearly, all three trace plots look fine, so we conclude that the chain mixing is acceptable and we
just proceed using the results from the BRugs run.

You can explore the posterior densities from each of the three chains by the command
densityplot:

> print( densityplot( mc.brugs ) )

Once satisfied with convergence you can look at the posterior across all chains, by assembling
them in an mcmc object. A few bells and whisthles have been added here, such as the omission of
the density of the deviance ([,-2]), the constraining of the scales to be the same on the x-axis
(scales=list(x="same",y="free")), the use of the entire plot area (aspect="fill"), and the
arrangement of panels in 1 column by two rows (layout=c(1,2)):

> print(
+ densityplot( as.mcmc(as.matrix(mc.brugs))[,-2],
+ main="BRugs", lwd=3,
+ aspect="fill", scales=list(x="same",y="free"),
+ plot.points=FALSE, layout=c(1,2) ) )

If you want the density of one specific parameter only, you can go back to basics and use
density. This also gives you the possibility of subsequently plotting the analytically derived
density in this frame too:

> plot( density(mu.post<-as.mcmc(as.matrix(mc.brugs))[,"mu"]),
+ xlab=expression(mu), ylab="", lwd=4, col=gray(0.5), main="")
> abline(v=quantile(mu.post,probs=c(5,50,95)/100))
> curve( dgamma( x, 634, 26 ), from=20, to=30, lwd=3, col="red", add=TRUE )
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Figure 1.2: Trace plots from the three different approaches to running BUGS.
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Figure 1.3: Posterior densities; left panel is the default plot from densityplot, the right panel is
the result from assembling the posterior from the three chains and doing a bit of grooming of the
plot.
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Chapter 2

Exercises

2.1 Bayesian inference in the binomial distribution

This exercise illustrates the prior to posterior calculations in the simple example of to inference
about an unknown binomial probability, θ.

1. First, suppose that only a finite number of possible values for the true proportion θ are
possible, e.g. (θ1, θ2, . . . , θJ), with prior probabilities p(θj), where

∑
j p(θj) = 1. For a single

Bernoulli trial y ∈ (0, 1), the likelihood for each value for θ is given by

p(y|θj) = θj
y(1− θj)1−y,

For an outcome y, Bayes’ theorem combines the discrete prior distribution with the
likelihood to generate posterior probabilities for the θj :

p(θj |y) ∝ θjy(1− θj)1−y × p(θj),

To get the proper posterior distribution, you have to normalize the r.h.s., that is divide by
the sum.

If have a binomial observation, i.e. x events out of n trials, then the posterior will be:

p(θj |x) ∝ θxj (1− θj)n−x × p(θj).

(a) Suppose a drug has an unknown true response rate θ, and for simplicity assume that θ
can only take one of the values θ1 = 0.2, θ2 = 0.4, θ3 = 0.6 or θ4 = 0.8, and that we
adopt the “neutral” position of assuming each value θj is equally likely, i.e. p(θj) = 0.25
for each j = 1, 2, 3, 4.
If we observe onle one person with a positive response (y = 1). How should our belief in
the possible values be revised? Use this table to update from the prior to the posterior:

Prior Likelihood Likelihood × prior Posterior
j θj p(θj) p(y|θj) p(y|θj)p(θj) p(θj|y)

1 0.2 0.25
2 0.4 0.25
3 0.6 0.25
4 0.8 0.25∑

j 1.0 1.0

13
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(b) If we instead of one patient had observations on n = 20 persons out which x = 15 had
a positive response, how would the posterior look? Use that same table to complete the
computations:

Prior Likelihood Likelihood × prior Posterior
j θj p(θj) p(y|θj) p(y|θj)p(θj) p(θj|y)

1 0.2 0.25
2 0.4 0.25
3 0.6 0.25
4 0.8 0.25∑

j 1.0 1.0

(c) Suppose we had given non-zero prior probability to the extreme values of θ = 0, 1 (that
is, the drug either never or always workes). The prior distribution is then on the six
values θ1 = 0, θ2 = 0.2, θ3 = 0.4, θ4 = 0.6, θ5 = 0.8 or θ6 = 1.0, with p(θj) = 1/6.
Describe qualitatively how the results in the table in part (a) would change if we used
this discrete prior distribution on 6 values for θ for the same data, that is, 15 successes
out of 20 trials. Uste this table for the calculations:

Prior Likelihood likelihood × prior Posterior
j θj p(θj) p(y|θj) p(y|θj)p(θj) p(θj|y)

0 0.0 1/6
1 0.2 1/6
2 0.4 1/6
3 0.6 1/6
4 0.8 1/6
5 1.0 1/6∑

j 1.0 1.0

(d) How would the results change if we used the data in the example in the module notes,
that is, we had just one success from one trial?
You can use this table for the calculations:

Prior Likelihood likelihood × prior Posterior
j θj p(θj) p(y|θj) p(y|θj)p(θj) p(θj|y)

0 0.0 1/6
1 0.2 1/6
2 0.4 1/6
3 0.6 1/6
4 0.8 1/6
5 1.0 1/6∑

j 1.0 1.0

(Hint : It is not necessary to actually calculate the posterior probabilities explicitly.
Try considering the value of the likelihood for each value of θ and the impact that the
two new values of the likelihood for θ = 0 and θ = 1 will have on the calculations.

2. In the analysis above, for simplicity, we assumed that θ can could only take one of the
values (0), 0.2, 0.4, 0.6, 0.8, (1).
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Now suppose that previous experience with similar compounds has suggested that response
rates between 0.2 and 0.6 could be feasible, with an expectation around 0.4. If we want a
continuous prior distribution on the interval (0, 1), we should choose one with mean 0.4 and
say 95% of the probability mass in the interval (0.2,0.6), or more ad hoc, with a standard
deviation of 0.1.

(a) We choose a Beta(a, b) as prior. From the properties of the beta distribution we know
that mean m and standard deviation s are:

m =
a

a+ b
(2.1)

s =

√
m(1−m)
a+ b+ 1

(2.2)

The expression in equation (2.2) can be rearranged to give a+ b =
(
m(1−m)/s2

)
− 1.

Now use the target values m = 0.4 and s = 0.1 to obtain a value for a+ b, and the
formula for m to get separate values for a and b.

(b) Make a graph of the prior distribution for p, the success probability. The Beta-density
is available in R as the function dbeta. You would need to type ?dbeta to get the help
function up.
(Hint: You can generate a vector of say 200 equidistantly spaced points between 0 and
1 by seq(from=0,to=1,length=200).

(c) Suppose we observe x = 15 successes out of n = 20 trials. Make a graph of the
likelihood for this observation. The binomial density is available in R as dbinom.

(d) From the prior distribution for the parameter and the likelihood we can form the
posterior by taking the product. We know from lectures that the parameters of the
beta distribution are updated to [a?, b?] where a? = a+ x and b? = b+ (n− x).
Now make a third graph of the posterior for the success probability.

(e) Plot the three curves in one graph, using par(mfrow=c(3,1)) before running the three
plot statements.

(f) (Complicated, but illustrative) Pack the generation of the three graphs into an
R-function that takes m, s (mean and standard deviation of the prior), x and n (the
observed data) as arguments, and observe how the posterior changes when changing
the prior and the data.

3. The French mathematician Pierre-Simon Laplace (1749–1827) was the first person to show
definitively that the proportion of female births in the French population was less then 0.5,
in the late 18th century, using a Bayesian analysis based on a uniform prior distribution (see
Gelman et al ,̇ p.34). Suppose you were doing a similar analysis but you had more definite
prior beliefs about the ratio of male to female births. In particular, if θ represents the
proportion of female births in a given population, you are willing to place a Beta(100,100)
prior distribution on θ.

(a) Show that this means you are more than 95% sure that θ is between 0.4 and 0.6,
although you are ambivalent as to whether it is greater or less than 0.5.

(b) Now you observe that out of a random sample of 1,000 births, 511 are boys. What is
your posterior probability that θ > 0.5?
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2.2 Simple linear regression with BUGS

The pupose of this exercise is to inrtoduce the use of BUGS as a machinery for estimation in
standard statistical models. This is done using a simple linear regression example. The model we
will be using is:

yi = α+ βxi + ei, ei ∼ N (0, σ2)

assuming that the eis are independent.

1. To make thinge easier, we use bogus data for the analysis:

> x <- c(1,2,3,4,5,6)
> y <- c(1,3,3,3,5,7)

Plot them and make s standard linear regression using lm() from R: What are the estimates
of intercept, slope and residual standard deviation in this model?

Provide confidence intervals for α and β.

2. The next step is to use BUGS to estimate in the model. So referring to the section
introducing BUGS, you should set up the following structures in R before invoking BUGS
through the bugs() function:

• Data — a list.
• Initial values — a list of lists.
• Parameters to monitor — a character vector.
• A file with the BUGS program.

In the program you must specify the model in terms of the three parameters of the model
and the 6 observations of y and x. You should also specify the prior distributions of the
parameters α, β of σ. Use uninformative priors for all three; that is normal priors with large
variance for α and β, whereas a unform prior on some suitably large interval ([0,100], say)
for σ is recommendable.

Run the program for 20000 iterations with 10000 as burn-in.

3. Convert the result into a mcmc.list object using as.mcmc.list(obj$sims.array) and
inspect the posterior using summary. Remember to load the coda package first. Compare
the posterior medians and central 95% posterior intervals with the estimates and confidence
intervals derived.

How well do they agree?

4. Now try to do the same on a real dataset. In the Epi package is a datset, births which has
data on 500 births in London, notably the birthweigst (bweight) and gestational age
(gestwks). We will set up a rather näıve regression model with a linear relationship
between x, number of gestational weeks and y birthweight.

Now load the data and get the subset where the explanatory variable is non-missing:

> library( Epi )
> data( births )
> births <- subset( births, !is.na(gestwks) )

Re-use the set-up from the previous question to get classical regression estimates and
estimates from the Bayesian machinery and compare them. Remember also to consider how
the classically derived confidence intervals agree with the posterior central intervals.
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2.3 Examples of the Gibbs sampler and Metropolis Hastings
algorithm

1. Consider a single observation (y1, y2) from a bivariate normally distributed population with

mean θ = (θ1, θ2) and known covariance matrix
(

1 ρ
ρ 1

)
. With a uniform prior

distribution on θ, the posterior distribution is(
θ1
θ2

)
|y ∼ N

((
y1

y2

)
,

(
1 ρ
ρ 1

))
.

Although it is simple to draw directly from the joint posterior distribution of (θ1, θ2), we set
up the Gibbs sampler explicitly here for the purpose of illustration. To apply the Gibbs
sampler to (θ1, θ2), we need the conditional posterior distributions.

(a) Use the properties of the multivariate normal distribution (either (A.1) or (A.2) on
page 579 of BDA) to show that the relevant conditional distributions are

θ1|θ2, y ∼ N(y1 + ρ(θ2 − y2), 1− ρ2),
θ2|θ1, y ∼ N(y2 + ρ(θ1 − y1), 1− ρ2).

(b) The Gibbs sampler proceeds by alternately sampling from these two normal
distributions. In general we would say that the natural way to start the iterations
would be with random draws from a normal approximation to the posterior
distribution; of course, such draws would eliminate the need for iterative simulation in
this trivial example!
Use the conditional distributions for θ1 and θ2 with (y1, y2) = (0, 0) and ρ = 0.8 to set
up a simple Gibbs sampler in R. Use two vectors, one for θ1 called theta1 and one for
θ2 called theta2, and start by setting the all the elements of each of theta1 and
theta2 to 0:
> numsims <- 1000
> rho <- 0.8
> theta1 <- numeric(numsims)
> theta2 <- numeric(numsims)

Now amend the first value of theta1 to -3 and sample a single value from the
conditional distribution of θ2 given θ1 and set this as the first element of theta2:
> theta2[1] <- rnorm( 1, mean=rho*theta1[1], sd=sqrt(1 - (rho^2)) )

Now use a loop to iterate the process of sampling from the conditional distribution of
θ2 given θ1 and vice versa:
> for(i in 2:numsims)
+ {
+ theta1[i] <- rnorm(1,mean=rho*theta2[i-1],sd=sqrt(1 -
+ (rho^2)))
+ theta2[i] <- rnorm(1,mean=rho*theta1[i],sd=sqrt(1 -
+ (rho^2)))
+ }

Generate 1000 values for each of θ1 and θ2 using the Gibbs sampling routine from part
(b) of the question. Calculate the sample mean and standard deviation of the final 500
realised values for each of θ1 and θ2. Show that these empirical values for the mean
and standard deviation are close to the theoretical values for the posterior marginal
distributions of θ1 and θ2 based on the joint posterior distribution displayed above:
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> mean(theta1[501:1000])
> mean(theta2[501:1000])
> sqrt(var(theta1[501:1000]))
> sqrt(var(theta2[501:1000]))

Also check that the correlation between the two sequences is close to the true value of
0.8:
> cor(theta1[501:1000], theta2[501:1000])

2. We can also use the Metropolis-Hasting algorithm to sample from the posterior distribution.
For the proposal distribution h() we use the uncorrelated bivariate normal distribution.
Implement this in R by working through the following.

Set the correlation to ρ = 0.7, the number of simulation nsim to 1000, initialise a matrix
ans with 1000 rows and 2 columns that will hold the results of the simulation and set up the
2× 2 correlation matrix Sigma and its inverse SigmaInv:

> rho <- 0.7
> nsim <- 1000
> ans <- matrix(NA, nr=nsim, nc=2)
> Sigma <- matrix(c(1,rho,rho,1), nr=2)
> SigmaInv <- solve(Sigma)

We start the simulation at x1 = x2 = 30 and set up a vector xcurr that holds the current
values of x1 and x2:

> x1 <- x2 <- 30
> xcurr <- c(x1,x2)

Initialise an “acceptance vector” called accept to 0 and the standard deviation sigma of the
proposal distribution to 2. Run nsim iterations and at each iteration, generate a proposal
called xprop by adding a normal random variate with mean 0 and standard deviation 2 to
the current value. Calculate the log-likelihood for both the current and proposed values and
accept this with the appropriate probability. If the proposal is accepted, the correspondign
component of the accept vector is set to 1 (in fact “TRUE”), otherwise 0 (“FALSE”):

> accept <- numeric(nsim)
> sigma <- 2
> for (ii in 1:nsim){
+ xprop <- xcurr + rnorm(2, mean = 0, sd = sigma)
+
+ logkxprop <- - t(xprop) %*% SigmaInv %*% xprop /2
+ logkxcurr <- - t(xcurr) %*% SigmaInv %*% xcurr /2
+
+ alpha <- min(1, exp(logkxprop-logkxcurr))
+ u <- rnorm(1)
+
+ if ( accept[ii] <- (u<alpha) ){
+ xaccept <- xprop
+ } else {
+ xaccept <- xcurr
+ }
+
+ ans[ii,] <- xaccept
+ xcurr <- xaccept
+ }
> cat("Accepted proposals: ", sum(accept)/nsim, "\n")

Now plot all samples:
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> pairs(ans)

Plot the two series of values (x1 and x2) to determine the number of iterations that we need
to use as the burn-in:

> matplot(ans, type='l')

It looks like it is sufficient to discard the first 100 samples as the burn in:

> pairs(ans[-(1:100),])

We can check dependencies among each of the series for x1 and x2 using the autocorrelation
functions pacf (for partial autocorrelation) and acf:

> par( mfrow=c(2,2) )
> pacf(ans[,1])
> pacf(ans[,2])
> acf(ans[,1])
> acf(ans[,2])

You should investigate the effect of changing

(a) The value of the correlation parameters ρ.

(b) The mean of the proposal distribution.

(c) The standard deviation of the proposal distribution.

3. It’s instructive to compare the bivariate sampler above to a single component
Metropolis–Hastings sampler where the proposal for h(x2|xt1, xt2) is x2 = xt2 + ε where
ε ∼ N(0, σ2) for some choice of σ2 and likewise for x1. The set up is the same:

> rho <- 0.7
> nsim <- 1000
> ans <- matrix(NA, nr=nsim, nc=2)
> x1 <- x2 <- 30
> xcurr <- c(x1,x2)

We now need two counters, one for each component of the vector containing the values of x1
and x2. We need to calculate the log-likelihood of the conditional distribution of x1 given
x2 for both the current and proposed value of x1 and proposal (the quantities logpx1prop
and logpx1, along with the unconditional log-likelihoods hx1prop and hx1, all of which are
used in generating the ratio governing the acceptance probability. We run through the same
routine for x2.

> accept1 <- accept2 <- numeric(nsim)
> sigma <- 5
> for (ii in 1:nsim){
+
+ # Update x1:
+ x1prop <- rnorm(1, mean=x1, sd=sigma)
+
+ logpx1prop <- -(x1prop-rho*x2)^2/(1-rho^2)
+ logpx1 <- -(x1-rho*x2)^2/(1-rho^2)
+
+ hx1prop <- dnorm(x1prop, mean=x1, sd=sigma)
+ hx1 <- dnorm(x1, mean=x1prop, sd=sigma)
+
+ alpha <- min(1, exp(logpx1prop-logpx1)*(hx1/hx1prop))
+ u <- rnorm(1)
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+
+ if ( accept1[ii] <- (u<alpha) ){
+ x1 <- x1prop
+ }
+
+ # Update x2:
+ x2prop <- rnorm(1, mean=x2, sd=sigma)
+
+ logpx2prop <- -(x2prop-rho*x1)^2/(1-rho^2)
+ logpx2 <- -(x2-rho*x1)^2/(1-rho^2)
+
+ hx2prop <- dnorm(x2prop, mean=x2, sd=sigma)
+ hx2 <- dnorm(x2, mean=x2prop, sd=sigma)
+
+ alpha <- min(1, exp(logpx2prop-logpx2)*(hx2/hx2prop))
+ u <- rnorm(1)
+
+ if ( accept2[ii] <- (u<alpha) ){
+ x2 <- x2prop
+ }
+ ans[ii,] <- c(x1,x2)
+ }
> cat("Accepted proposals, x1: ", sum(accept1)/nsim, "x2:", sum(accept2)/nsim, "\n")

Once again we can plot all the samples:

> pairs(ans)

Check the number of iterations that we need to discard as a burn-in:

> matplot(ans, type='l')

Let’s discard the first 100 samples:

> pairs(ans[-(1:100),])

Have a look at the cumulative acceptance probabilities for x1 and x2:

> plot( 1:nsim,cumsum(accept1)/1:nsim, ylim = c(0,1), pch = "",
+ xlab = "Iteration Number", ylab = "Probability")
> lines(1:nsim,cumsum(accept1)/1:nsim, ylim = c(0,1), lwd = 3)
> title(main = "Cumulative acceptance probability", cex = 0.5)

> plot( 1:nsim,cumsum(accept2)/1:nsim, ylim = c(0,1), pch = "",
+ xlab = "Iteration Number", ylab = "Probability")
> lines(1:nsim,cumsum(accept2)/1:nsim, ylim = c(0,1), lwd = 3)
> title(main = "Cumulative acceptance probability", cex = 0.5)

Also let’s plot the two series x1 and x2 against each other (change the value of the standard
deviation in the simulations above to see the jumps get bigger or smaller):

> plot(ans[,1],ans[,2],ylim = c(-50,50),xlim = c(-50,50), xlab = "x1", ylab = "x2")
> lines(ans[,1],ans[,2],lwd = 1)
> title(main = "Metropolis-Hastings sampler s.d. = 2")

Finally check the dependencies within each of the x1 and x2 series:

> par( mfrow=c(2,2) )
> pacf(ans[,1])
> pacf(ans[,2])
> acf(ans[,1])
> acf(ans[,2])
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Consider the following questions:

(a) What the is cumulative acceptance probability after 1000 simulations? How many
simulations are before the acceptance ratio stabilises?

(b) Explore how changing the standard deviation of the proposal distributions alters

i. the cumulative acceptance ratio,
ii. the number of iterations required to achieve convergence and a stable acceptance

ratio,
iii. the visual appearance of the sample path of the bivariate plot.
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2.4 Estimating a rate from Poisson data

Asthma deaths in Australia (cf Section 2.7 of Bayesian Data Analysis pages 53-55).
The death toll for asthma in Australia in 2002 was 397, down from 422 in 2001 and 454 in 2000

(source: National Asthma Council of Australia, www.nationalasthma.org.au). This latest figure
represents a rate of very close to 400 in 20 million, or 2 cases per 100,000 persons per year,
corresponding to θ = 2 in the example. The observed value in the example was 3 asthma deaths
in a population of 200,000, an observed rate of 1.5 deaths per 100,000 persons per year.

1. What’s the posterior probability, using the gamma(3.0,5.0) prior in the example, that the
true rate in the hypothetical city of 200,000 people is actually higher than the observed
Australian rate of about 2 deaths per 100,000 persons per year? The relevant BUGS code can
be found in the file asthma.odc.

2. Use the BUGS code in asthma.odc from question 1 as the basis for preparing a second set of
BUGS code to incorporate the Australia figures for 2002, that is, 397 deaths from 20 million
people, in addition to the existing figures of 3 deaths in the hypothetical population of
200,000. You will need to recast the nodes y, lambda, theta and n as arrays of dimension 2
(so y would actually be y[1] and y[2], where the first element of each array refers to the
original hypothetical data and the second element refers to the Australian data). Set up a
separate additional node to monitor when the difference in the sampled values of θ1 and θ2
is bigger than zero. Compile the BUGS model and use it to calculate the posterior probability
that the difference θ1 − θ2 > 0, where θ1 corresponds to the original rate parameter in part
(a) and θ2 corresponds to the Australian rate.

You can use the BUGS code in the files from previous practicals to get some ideas as to how
to set up the relevant arrays, for loop and posterior probability nodes based on the step
function.

3. Why wouldn’t you expect the answer to be much different from the answer we got in part
(a) where we assumed the Australian rate to be exactly 2 deaths per 100,000?

4. Suppose that we had the following additional data on the number of asthma deaths in
Australia (source: National Asthma Council of Australia, www.nationalasthma.org.au),
availbel in the course material as asthma.dat:

Year Asthma Deaths

1997 499
1998 481
1999 424
2000 454
2001 422
2002 397
2003 314
2004 311
2005 318
2006 402

Extend the model in the previous questions to accommodate these new data. The number
of deaths in 2006 (402) is much higher than the previous three years where the number of
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deaths was about 300 - how could we check this formally? For some ideas have a look at the
airline example in exercises 2.13 and 3.12 of Bayesian Data Analysis and exercise 6 from this
course.
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2.5 Estimating the speed of light

Simon Newcomb set up an experiment in 1882 to measure the speed of light. Newcomb measured
the amount of time required for light to travel 7442 metres. The measurements are availble in the
file newcomb.r, which should be sourced to get the data into R:

> source("../data/newcomb.r")
> newcomb

[1] 28 26 33 24 34 -44 27 16 40 -2 29 22 24 21 25 30 23 29 31
[20] 19 24 20 36 32 36 28 25 21 28 29 37 25 28 26 30 32 36 26
[39] 30 22 36 23 27 27 28 27 31 27 26 33 26 32 32 24 39 28 24
[58] 25 32 25 29 27 28 29 16 23

A histogram of Newcomb’s 66 measured is shown in figure 2.1. There are two unusually low
measurements and then a cluster of measurements that are approximately symmetrically
distributed. We (inappropriately!) apply the normal model, assuming that all 66 measurements
are independent draws from a normal distribution with mean µ and variance σ2. The main
substantive goal is posterior inference for µ. The outlying measurements do not fit the normal
model, an issue that we pursue briefly in question 4. The sample mean of the n = 66
measurements is y = 26.2, and the sample standard deviation is s = 10.8.

1. Assuming the non-informative prior distribution p(µ, σ2) ∝ (σ2)−1 (which is equivalent to a
joint uniform prior distribution on (µ, log σ)), the posterior distribution of µ has the form

µ− y
s/
√
n

∣∣∣∣ ∼ tn−1. (2.3)

Note that only µ is unknown in the expression above since we are conditioning on the
observed values of the sample mean y, the sample standard deviation s and the sample size
n. Use this distributional result to calculate a 95% central posterior interval for µ.

2. The posterior interval can also be obtained by simulation. Following the factorisation of the
posterior distribution given in lectures as

p(µ|σ2, y) ∼ N(y, σ2/n)

p(σ2|y) ∝ (σ2)−(n+1)/2 exp
(
−(n− 1)s2

2σ2

)
,

which is a scaled inverse-χ2 density:

p(σ2|y) ∼ χ−2(n− 1, s2),

we first draw a random value of σ2 ∼ χ−2(65, s2) as 65s2 divided by a random draw from
the χ2

65 distribution. Then given this value of σ2, we draw µ from its conditional posterior
distribution, N(26.2, σ2/66).
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Figure 2.1: Histogram of Simon Newcomb’s measurements for estimating the speed of light, from
Stigler SM. (1977). Do robust estimators work with real data? (with discussion). Annals of
Statistics 5, 1055-1098. The data are times for light to travel a fixed distance, recorded as deviations
from 24,800 nanoseconds.
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Use the following computing code (contained in the file speed_of_light.R) to carry out
these simulation steps (for 1,000 iterations) in R and generate a vector of sampled values mu.
You can type summary(mu) to get a summary of the values in the vector mu (including the
mean), and type sort(mu) to display the ordered values in the vector mu; the 25th and 975th

values provide estimates of the limits of the 95% posterior credible interval for µ (these can
be accessed directly by typing sort(mu)[25] and sort(mu)[975]). The R code:

> ybar <- mean(newcomb)
> s <- sqrt(var(newcomb))
> n <- 66
> numsims <- 1000
> mu <- numeric(length = numsims)
> sigma2 <- numeric(numsims)
> for( i in 1:numsims )
+ {
+ sigma2[i] <- (65*(s^2))/(rchisq(1,n-1,ncp=0))
+ mu[i] <- rnorm(1, mean = ybar, sd = sqrt(sigma2[i]/n))
+ }

3. Check the results in questions 1 and 2 using the BUGS code in the file speed_of_light.odc
which represents the same model and can be used to simulate from the posterior
distributions for µ and σ.

4. Based on the currently accepted value of the speed of light, the “true value” for µ in
Newcomb’s experiment is 33.0, which not only falls outside our 95% interval from questions
1 and 2 but has a “z-score” based on the posterior distribution for µ of about 5; so values as
large as this or larger attract very little posterior probability under our model for the data.
This reinforces the fact that posterior inferences are only as good as the model and the
experiment that produced the data.

One way we can check the suitability of the model is to amend the BUGS code from question
3 so that it generates a vector y.pred of 66 observations from the normal distribution with
the current sampled values of µ and σ. We can then ask BUGS to retain the smallest value
from the vector y.pred, generating a distribution of minimum measurements for a sample of
size n = 66.

Open the file BUGS file speed_of_light_pred.odc and identify the changes that have been
made to the original BUGS file from question 3 (or, even better, try to make these changes
yourself before looking at the file!). Compile the model and run for 10,000 burn-in iterations
and 10,000 further iterations, summarise the distribution of the “smallest” value and
comment on the likelihood of observing the two negative observed values (-2 and -44).

See chapter 6 in Gelman et al. for an extensive discussion of such “posterior predictive
checking”, in particular a more detailed treatment of the problem discussed here in section
6.3 pages 160-161.
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2.6 Modelling the rate of airline fatalities 1976 to 2001

This exercise is based on exercises 2.13 and 3.12 from Gelman et al.. The original exercise has
been extended to include additional data from 1986 to 2001. It is useful to read the partial
solution to the original exercise 2.13 that appears in the most recent solutions file on Andrew
Gelman’s website, which is available as a PDF.

The data is available in the text file airline.txt with column names in the first line, aimed a
reading into R. It is easier to work with distances in units of 1011 miles, which is how the
passenger miles and accident rate data are presented in both source files (.odc and .txt).

The file sol6a.R contains an R-program that read data, produces all the relevant plots
suggested in the following exercise. The R-file also contains specifications of the models used in
BUGS and calls to WinBUGS using the package R2WinBUGS.

Table 2.1: Worldwide airline fatalities, 1976–2001. “Passenger miles” are in units of 1011 and the
“Accident rate” is the number of fatal accidents per 1011 passenger miles. Source: International
Civil Aviation Organization, Montreal, Canada (www.icao.int)

Year Fatal Passenger Accident
accidents miles rate

1976 24 3.863 6.213
1977 25 4.300 5.814
1978 31 5.027 6.167
1979 31 5.481 5.656
1980 22 5.814 3.784
1981 21 6.033 3.481
1982 26 5.877 4.424
1983 20 6.223 3.214
1984 16 7.433 2.152
1985 22 7.107 3.096
1986 22 9.100 2.418
1987 25 10.000 2.500
1988 29 10.600 2.736
1989 29 10.988 2.639
1990 27 10.880 2.482
1991 29 10.633 2.727
1992 28 11.956 2.342
1993 33 12.343 2.674
1994 27 13.011 2.075
1995 25 14.220 1.758
1996 24 16.371 1.466
1997 26 15.483 1.679
1998 20 18.080 1.106
1999 21 16.633 1.263
2000 18 18.875 0.954
2001 13 19.233 0.676

1. The simplest model: All years look the same.

(a) Assume that the numbers of fatal accidents in each year are independent with a
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Poisson(θ) distribution. Set a (noninformative) gamma prior distribution for θ and
determine theoretically using the results in lectures the posterior distribution based on
the data from 1976 through 2001.

(b) In this case it is also possible to determine theoretically the predictive distribution for
the number of fatal accidents in 2002 - what is it? (See Section 2.7 page 53 of Gelman
et al.).

(c) How can we use the posterior distribution for θ and the assumption about the
distribution of the number of fatal accidents to construct a two-stage process to draw
samples from the predictive distribution for the number of fatal accidents in 2002?

(d) If we set up a node in BUGS for year 2002 (i.e. adding an extra component to the data
array for years 1976 to 2001 as has been done in the computing code provided) with
the number of fatal accidents declared as “NA” (missing) will cause BUGS to draw from
the predictive distribution for this node. What is the 95% predictive interval for the
number of fatal accidents in 2002?

2. A model with constant rate of fatal airline crashes.

(a) Now assume that the numbers of fatal accidents in each year follow independent
Poisson distributions with a mean proportional to the number of passenger miles flown.
Using the same noninformative prior distribution for θ determine the posterior
distribution of the rate, i.e. accidents per passenger miles.

(b) Modify your BUGS code from the previous question to accomodate this model, and use
it to generate a 95% predictive interval for the number of fatal accidents in 2002 under
the assumption that 2× 1012 passenger miles were flown that year.
(Hint: Note that you cannot stick an expression in as an argument to a distribution in
BUGS; an expression as fatal[i] dpois(lambda*miles[i]) will cause an error, so you
will have to construct nodes for the mean, e.g. mu[i] <- lambda * miles[i];
fatal[i] dpois( mu[i] ).)

3. We now expand the model by assuming that the number of fatal accidents in year t follows
a Poisson distribution with mean α+ βt, i.e. independent of passengar miles but merely
linearly decreasing by time.

(a) Plot the number of fatal accidents each year over time to see that this was a dubious
assumption even with the original data and is certainly not reasonable in light of the
new data - why?

(b) Moreover, a linear function of time t has the potential to generate negative values
unless the parameters α and β are constrained - why is this a problem?

4. It would be more satisfactory to assume that the number of fatal accidents y(t) in year t
where m(t) passenger miles were flown follows a Poisson distribution with mean(
exp(α+ βt)

)
m(t). This is a generalised linear model with canonical (log) link:

E
(
y(t)|t,m(t)

)
=

(
exp(α+ βt)

)
m(t) (2.4)

log
(

E
(
y(t)|t,m(t)

))
= α+ βt+ log(m(t)) (2.5)

(a) Calculate crude estimates and uncertainties for (α, β) using linear regression based on
the relationship described above in equation (2.5), i.e. using the log-rates as reponse
variable.
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(b) Fit the generalized linear model using glm in R.

(c) Use the estimates from the maximum likelihood estimation as initial values to run the
model in BUGS and to generate samples from the posterior distribution of α and β.

(d) Use the xyplot.mcmc.list function to check the mixing of the chains for α and β.

(e) Use the densityplot.mcmc function to display smoothed marginal posterior densities
for α and β based on the sampled values of α and β. Also, make a scatter-plot showing
the joint posterior distribution of α and β.

(f) Plot the posterior density for the expected number of fatal accidents in 2002,(
exp(α+ 2002β)

)
×m(2002) where we again assume the number of miles flown in 2002

is 2× 1012.

(g) Obtain the 95% predictive distribution interval for the number of fatal accidents in
2002.

(h) How would you define and derive the posterior predictive distribution of the number of
fatalities in 2002, from the maximum likelihood approach?
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2.7 Assessing convergence using the Gelman-Rubin diagnostic
— Using coda in R

1. Compile the model in the file schools.odc for the SAT coaching data presented in
Bayesian Data Analysis and also as an example in the documentation for the bugs()
function in the R2WinBUGS package in R.

The schools example data are a part of the R2winBUGS data:

> library( R2WinBUGS )
> data( schools )
> schools

school estimate sd
1 A 28.39 14.9
2 B 7.94 10.2
3 C -2.75 16.3
4 D 6.82 11.0
5 E -0.64 9.4
6 F 0.63 11.4
7 G 18.01 10.4
8 H 12.16 17.6

Use BUGS in R, and ensure that you are running multiple chains. The standard output
displays the Gelman-Rubin diagnostic (the potential scale reduction factor R̂) for each
monitored node, so after BUGS has completed the specified number of iterations you should
see values of R̂ for µθ (mu.theta), σθ (sigma.theta) and for each of the components of
θ = (θ1, θ2, . . . , θ8) (theta[1], theta[2], ... , theta[8]).

(a) Run the compiled model 10 times for just 100 iterations, and make a note of the
potential scale reduction factor R̂ for each monitored node on each occasion. You can
either do this manually by observation, estimating the values of R̂ from the graphical
output, or access the calculated values by displaying schools.sim$summary.

(i) Which nodes have values of R̂ close to 1 and thus appear to have reached
convergence?

(ii) Which nodes have values of R̂ that are “not close to 1” (bigger than 1.2) and
therefore require more iterations to reach convergence?

(iii) Do all nodes have values of R̂ that are either all close to 1 or all not close to 1, or
are there some nodes that have “low” values of R̂ for some runs and large values on
others? This raises the question of whether we need to be concerned about
sampling variation in R̂.

(b) Repeat part (a) and steps (i) to (iii) above using 300 iterations per chain.

(c) Repeat part (a) and steps (i) to (iii) above using 500 iterations per chain.

Comment on the improved convergence using an increasing number of iterations. Do you
think 1,000 iterations, as used in the original practical session was sufficient to ensure
convergence of all nodes?

2. Load and install the coda package in R. Use the output dataframe schools.sim (in
particular the list schools.sim$sims.array containing the values for each monitored node
in each simulated chain), which is created after compiling and running the schools model
in BUGS through R, to create some mcmc and mcmc.list objects. Use these objects as inputs
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to the diagnostic procedures in coda, such as gelman.diag, gelman.plot, geweke.diag,
geweke.plot, hiedel.diag and raftery.diag to gain an overview of the convergence
diagnostics provided by the coda package.
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2.8 Meta-analysis of clinical trial data

This example, from Spiegelhalter et al. (2004), is described in more detail in Higgins and
Spiegelhalter (2002). The numbers have been re-worked from the original example using the same
raw data to provide consistency with the textbook for this subject, since Spiegelhalter et al.
(2004) use a “continuity correction” (adding frac12 to the numerator and denominator) when
calculating estimated odds ratios and the standard deviation of their logarithm which is not used
by Gelman et al. in Bayesian Data Analysis.

Epidemiology, animal models and biochemical studies suggested intravenous magnesium
sulphate may have a protective effect after acute myocardial infarction (AMI), particularly
through preventing serious arrhythmias. A series of small randomised trials culminated in a
meta-analysis (Teo et al. (1991)) which showed a highly significant (P < 0.001) 55% reduction in
odds of death. The authors concluded that “further large scale trials to confirm (or refute) these
findings are desirable”, and the LIMIT-2 trials (Woods et al. (1992)) published results showing a
24% reduction in mortality in over 2000 patients. An editorial in Circulation subtitled “An
effective, safe, simple and inexpensive treatment” (Yusuf et al. (1993)) recommended further trials
to obtain “a more precise estimate of the mortality benefit”. Early results of the massive ISIS-4
trial pointed, however, to a lack of any benefit, and final publication of this trial on over 58,000
patients showed a non-significant adverse mortality effect of magnesium. ISIS-4 found no effect in
any subgroups and concluded that “overall, there does not now seem to be any good clinical trials
evidence for the routine use of magnesium in suspected acute MI” (Collins et al. (1995)).

The aim of the re-analysis presented here is to investigate how a Bayesian perspective might
have influenced the interpretation of the published evidence on magnesium sulphate in AMI
available in 1993.

We present here a meta-analysis of randomised trials. The outcome measure is the odds ratio
for in hospital mortality, with odds ratios less than 1 favouring magnesium. We outlined three
approaches in the lecture for modelling results from multiple trials but we’ll concentrate here on
(a) a “pooled” analysis assuming identical underlying effects and (b) a random-effects analysis
assuming exchangeable treatment effects, ignoring the third option (c) a fixed-effect analysis
assuming independent, unrelated effects where estimates of a trial-specific effect for each trial are
obtained using only data from that trial.

We begin with an empirical Bayes analysis, using estimates of the overall mean µ and the
between-study standard deviation τ , in order to use the formula-driven normal posterior analysis
described in the lectures. For both the pooled- and fixed-effects analysis we assume a uniform
prior for the unknown effects on the log(OR) scale. The empirical Bayes analysis does not use any
prior distributions on the parameters µ and τ (although the estimate for µ is equivalent to
assuming a uniform prior on the log(OR) scale).

We also conduct a full Bayesian analysis by placing prior distributions on both the overall
treatment effect µ and the between-treatments standard deviation τ . A sensitivity analysis is
performed using a “neutral” prior for µ centred on “no effect”, which allows for scepticism about
large effects.

It is straightforward to conduct most of these analysis below using a spreadsheet, since the
conjugate normal analysis allows us to work with closed-form expressions. Data for this set of
exercises is in mag.xls or mag.RData, and BUGS codes can be found in mag.odc.

1. Calculate the pooled estimate µ̂ and a 95% confidence interval for assumed common
treatment effect µ using the formula in the lecture notes.

2. The unknown hyperparameters µ and τ may be estimated directly from the data - this is
known as the “empirical Bayes” approach as it avoids specification of the prior distributions
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for µ and τ . There are a variety of techniques available as they form part of classical
random-effects meta-analysis (Sutton et al. (2000); Whitehead (2002)). However, the
simplest is the “method-of-moments” estimator (DerSimonian and Laird (1986))

τ̂2 =
Q− (J − 1)∑J

j=1 1/σ2
j −

∑J
j=1 1/σ4

j∑J
j=1 1/σ2

j

(2.6)

where J = 8 is the number of trials and Q is the test for homogeneity

Q =
J∑
j=1

(yj − µ̂)2

σ2
j

. (2.7)

If Q < J − 1 then τ̂2 is set to zero and complete homogeneity is assumed.

(a) Calculate Q and hence the P-value for the test of homogeneity based on the null
distribution for Q which is chi-squared with J − 1 degrees of freedom.

(b) Use the calculated value of Q and the formula in equation 2.6 to calculate the value of
τ̂2. Figure 2.2 shows the profile likelihood (see the lecture), which summarises the
support for different values of τ . Note that the maximum likelihood estimator of τ2 is
zero although the profile likelihood suggests reasonable support for values of τ as large
as 1.

3. Let’s now get BUGS to perform the random-effects analysis of the same data (although you
may continue to perform the calculations using the Microsoft Excel spreadsheet if you
wish!). Fix the value of τ̂2 at its method-of-moments estimate, and run the BUGS code with
an approximately uniform prior distribution for µ. Output the posterior summary statistics
for µ and θ = (θ1, θ2, . . . , θ8).

(a) Compare the posterior means for the components of θ to the empirical log odds ratios
in table 2.2 of the question sheet.

(b) What is the posterior mean and 95% credible interval of the “average” effect µ and how
does it compare to the pooled effect? The results are shown in figure 2.3.

4. The random-effects analysis above is not a full Bayesian analysis since it uses no prior
distribution for τ̂2 (other than the trivial degenerate prior that places 100% of the
probability mass at the data-driven method-of-moments estimate). Change the prior
distribution for τ to uniform on (0,1000) and re-run the model. How does this affect the
results?

5. The meta-analyses above, whether a pooled- or random-effects analysis, finds a “significant”
benefit from magnesium. The apparent conflict between this finding and the results of the
ISIS-4 mega-trial have led to lengthy dispute, briefly summarised in Higgins and
Spiegelhalter (2002). We consider now the robustness of the meta-analysis results to the
choice of prior distribution, by performing a “credibility analysis” that checks whether the
findings are robust to a reasonable expression of prior “scepticism” concerning large benefits.
Re-do the analysis using the same vague prior distribution for τ , but now with a prior
distribution for µ that is normal with mean 0 (so it is centred on the null value) and
standard deviation 0.40, so that there is about a 5% chance that the true odds ratio is less
than 0.5, that is, we’re sceptical about a large benefit of the treatment. How does changing
to this new prior distribution alter the conclusions of the meta-analysis?
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Trial Magnesium Control Estimated Estimated Shrinkage
group group log(OR) yk SD sk Bk

deaths patients deaths patients

Morton 1 40 2 36 -0.83 1.25 0.90
Rasmussen 9 135 23 135 -1.06 0.41 0.50
Smith 2 200 7 200 -1.28 0.81 0.80
Abraham 1 48 1 46 -0.04 1.43 0.92
Feldstedt 10 150 8 148 0.22 0.49 0.59
Schechter 1 59 9 56 -2.41 1.07 0.87
Ceremuzynski 1 25 3 23 -1.28 1.19 0.89
LIMIT-2 90 1159 118 1157 -0.30 0.15 0.11

Table 2.2: Summary data for magnesium meta-analysis, showing estimated odds ratios, log(odds
ratios) (yj), standard deviations for log(odds ratios) (σj) and shrinkage coefficients Bj = σ2

j /(σ
2
j +

τ̂2). τ̂ is taken to be the method-of moments estimate 0.41 from equation (2.6).



2.8 Meta-analysis of clinical trial data 35

    
 

 

 

 

 

 

 

 

 

 

 

 

 

0.0 0.5 1.0 1.5 2.0

−5

−4

−3

−2

−1

0

tau

P
ro

fil
e 

lo
g(

lik
el

ih
oo

d)

  
 

              

0.0 0.5 1.0 1.5 2.0

−2.0

−1.5

−1.0

−0.5

0.0

0.5

lo
g(

O
R

)
Profile
Trials estimates
Overall estimate

Figure 2.2: Profile log(likelihood) of τ , showing reasonable support for values of τ between 0 and
1. also shown are individual and overall estimates of treatment effects for different values of τ :
although τ = 0 is the maximum likelihood estimate, plausible values of τ have substantial impact
on the estimated treatment effects.
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assuming τ = 0.41, leading to considerable shrinkage of the estimates towards a common value.
The “Overall” figure is the pooled estimate from each analysis.
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2.9 Linear mixed models of fetal growth

Open the BUGS Compound document fetal.odc and have a look at the code, which implements
the linear mixed model discussed in the lecture relating fetal head circumference to gestational
age (where the assumed linear relationship is between the square root of head circumference and a
fractional polynomial (in this case a quadratic) transformation of gestational age). Start by
identifying the names of the nodes corresponding to the following quantities in the model:

Yij Transformed measured of head circumference Y[ij]
Xij Transformed measured of gestational age X[ij]
β0 Fixed effect intercept mu.beta[1]
β1 Fixed effect gradient mu.beta[2]
β0 + u0i Random effect intercept for subject i sub.beta[i,1]
β1 + u1i Random effect gradient for subject i sub.beta[i,2]
u0i Random effect intercept deviation for subject i u[i,1]
u1i Random effect intercept deviation for subject i u[i,1]
(β0 + u0i)

+(β1 + u1i)Xij Conditional mean of Yij given β0, β1, u0i, u1i, Xij mu[ij]
Σ Variance-covariance matrix for the random effects Sigma2.beta
Ω Inverse of Σ with Wishart prior Omega.beta
σe residual or error standard deviation sigma.e
σ2
e residual or error variance sigma2.e

Table 2.3: Names of parameters and nodes in the BUGS code

1. Compile the BUGS model in the file fetal.odc and run for 20,000 iterations, discarding the
first 10,000 as a burn-in. Use the initial values for the parameters provided in the
fetal.odc file. Generate summary statistics for the following nodes:

• The fixed effect intercept and gradient mu.beta[1] and mu.beta[2] respectively.

• The (symmetric) variance-covariance matrix Sigma2.beta[] for the random effects
(where entry [1,1] is the variance of the random intercept, entry [2,2] is the variance
of the gradient and entry [1,2] is the covariance between the random effect intercept
and gradient.

• The residual variance sigma2.e.

You might like to verify your results (and the choice of starting values for the parameters
provided in the file fetal.odc) using the lme routine in R to fit the same linear mixed
model. Use the syntax

linmod <- lme(SQRTHC ~ 1 + TGA, data = hc, random = ~ 1 + TGA |
ID)

to create a model object named linmod. In this syntax the dataframe is named hc and
contains variables for the square root of head circumference SQRTHC (same as Y in the
WinBUGS model), transformed gestational age TGA (same as X in the WinBUGS model) and
subject identifier ID.
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2. (a) Use the posterior means of the entries of the random effects variance-covariance matrix
Sigma2.beta[] (for a description of the entries see question 1 above) to estimate the
correlation of the random effect intercept and gradient. What is your interpretation of
this estimate?

(b) Create a node called rancorr and set it equal to the correlation of the random effect
intercept and gradient based on the entry of the random effects variance-covariance
matrix Sigma2.beta. That is, set rancorr <-
Sigma2.beta[1,2]/(sqrt(Sigma2.beta[1,1])*
(sqrt(Sigma2.beta[2,2]))). Recompile and runs the BUGS model, and output
summary statistics for this node. Is the posterior mean of rancorr similar to the point
estimate generated in part (a) of the question? Is there much support for values of
rancorr higher or lower than its posterior mean?

(c) It is possible to alter the parametrisation of the model to reduce the correlation
between the random intercept u0i and the random gradient u1i. Consider “centering”
the tranformed gestational age Xij by subtracting a fixed constant c, redefining the
transformed gestational age as X

′
ij = Xij − c. Re-write the linear mixed model in

terms of X
′
ij (defining new random intercepts and gradients u

′
0i and u

′
1i which are

functions of the original u0i and u1i and the constant c). What value of c will ensure
that the correlation between u

′
0i and u

′
1i is zero? Can you alter the WinBUGS code to

demonstrate this empirically?

3. One of the features of BUGS is the ability to generate predictive distributions for unobserved
quantities by specifying these quantities as nodes in the graphical model used by BUGS to
generate the simulations. Here we compare the unconditional predictive distribution of
(transformed) head circumference at 38 weeks (transformed) gestational age with the
corresponding conditional distribution given the value of the same fetal dimension at 18
weeks gestational age.

Details for the five observations made on fetus id = 5 are as follows:

id ga hc Y X

5 18.43 125 11.18 14.47
5 24.43 232 15.23 17.47
5 28.43 297 17.23 19.00
5 34.43 323 17.97 20.60
5 38.43 338 18.38 21.20

For fetus id = 5, we can capture the conditional distribution of transformed head
circumference at the final gestational age 38.43 weeks given the observed measurement at
the first gestational age of 18.43 weeks by creating a new id = 708 (we have observed data
for 707 fetuses) with identical data for the first gestational age but no observed head
circumferences measurements at the final gestational age:

id ga hc Y X

708 18.43 125 11.18 14.47
708 38.43 NA NA 21.20
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Note that these are observations 3098 and 3099 in our expanded data array, since we have
original observations on 3097 occasions. BUGS will generate values for the “missing” node
Y[3099] conditional on the observed for observation 3098 which we have indicated are from
the same fetus since they share the same id number (id = 708). We should also add
observation 3100 for a second new fetus to generate the unconditional distribution of
(transformed) head circumference at 38.43 weeks gestational age:

id ga hc Y X

709 38.43 NA NA 21.20

(a) Extend the data array as described above, change the maximum index for i to 709 and
for j to 3100, and then recompile and rerun the BUGS model. Monitor node Y[3099]
and Y[3100] which contain the conditional and unconditional transformed head
circumference. Comment on the difference in posterior means - is this large in
comparison to the posterior standard deviation of these two nodes? What is the
appropriate interpretation of the conditional posterior mean (for fetus id = 5) being
larger or smaller than the unconditional posterior mean?

(b) In this case we have the observed value of the (transformed) head circumference at
gestational age 38.43 weeks for fetus id = 5. Calculate a conditional z-score for this
observed value by subtracting the conditional mean (posterior mean of Y[3099]) at
38.43 weeks and dividing by the corresponding standard deviation. What is your
interpretation of this z-score? Calculate the corresponding z-score using the
unconditional values (from node Y[3100]) and compare this to the conditional z-score
- does it make sense?

(c) It is straightforward to calculate the unconditional mean and standard deviation for
transformed head circumference at gestational age 38.43 weeks (transformed
gestational age 21.20) using the linear regression equation and the formula for the
variance of a single observation, which is a quadratic function of transformed
gestational age involving the variance-covariance parameters of the random effects and
the error variance. Use the posterior means of the components of the vector mu.beta[]
and the matrix Sigma2.beta[] to calculate explicitly the mean and standard deviation
of the transformed head circumference at 38.43 weeks gestational age. How close are
the calculated values to the posterior mean and standard deviation of Y[3100]?
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2.10 Classical twin model in BUGS

Risk factors for mammographic density using twin data
Women with extensive dense breast tissue determined by mammography are known to be at

higher risk of breast cancer than women of the same age with lower breast density. We will use
data from a study of female monozygous (MZ) and dizygous (DZ) twin-pairs in Australia and
North America to analyse the within-pair correlation of breast density, adjusted for age and
weight.

The BUGS file mgram.odc contains computing code for the series of models outlined in the
questions below. The following table describes the variables in the dataframe (which is also
available as the Microsoft Excel file mgram.xls and the R data frame mgram):

pdens1 Percent mammographic density twin 1
pdens2 Percent mammographic density twin 2
weight1 Weight (kg) twin 1
weight2 Weight (kg) twin 2
mz Indicator of MZ pair (1 = MZ, 0 = DZ)
dz Indicator of DZ pair (1 = DZ, 0 = MZ)
agemgram1 Age in years of twin 1 at mammogram
agemgram2 Age in years of twin 2 at mammogram
study Location indicator (1 = Australia, 0 = North America)

Table 2.4: Names of variables in the BUGS data from the mammographic density example.

1. Recall the basic hierarchical model for paired data described in lectures:

yi1 = ai + εi1

yi2 = ai + εi2

where

εij ∼ N(0, σ2
e)

cov(εi1, εi2) = 0
ai ∼ N(µ, σ2

a)

(a) In order to compile the corresponding BUGS model and set it running, we need starting
values for the parameters µ, σ2

a and σ2
e . Note that 1

2(var(yi1) + var(yi2)) = σ2
a + σ2

e and
that 1

2(var(yi1 − yi2)) = σ2
e . Calculate the empirical values of var(yi1), var(yi2) and

var(yi1 − yi2), and use these in a “methods of moments” calculation to produce
estimates of σ2

a and σ2
e and hence generate starting values for σa and σe (since we are

placing noninformative prior distributions on the standard deviation rather than the
variance). You can use the sample mean of either yi1 or yi2 as the starting value for µ.

(b) Compile the BUGS code and generate 1,000 iterations for summary after a burn-in of
1,000 iterations. What are the posterior means and standard deviations of µ, σ2

a and
σ2
e?

(c) Use the posterior means of σ2
a and σ2

e to estimate the within-pair correlation of yi1 and
yi2.
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2. In question 1 we assumed a constant within-pair correlation for yi1 and yi2, in particular
that this correlation is the same for MZ and DZ pairs. If the outcome is influenced by
genetic factors then this is unlikely to be a satisfactory assumption. Use the second set of
BUGS code to compile a model that uses an additional parameter rho (ρDZ:MZ from
lectures) to represent the ratio of cov(yi1, yi2) in DZ and MZ pairs. We assign rho a starting
value of 0.5, and use the starting values from question 1 for the remaining parameters.

(a) Generate a table of posterior summary statistics for the four parameters µ, σ2
a, σ

2
e and

ρDZ:MZ .

(b) How have the posterior means of σ2
a and σ2

e changed now that DZ and MZ pairs can
have distinct within-pair correlations? How should this change be interpreted?

(c) Does the posterior mean value for ρDZ:MZ suggest that there are genetic factors
determining the value of mammographic density? Is the posterior estimate of ρDZ:MZ

consistent with an additive genetic model?

3. Previous research has established that age-adjusted mammographic density is a risk factor
for breast cancer. We can include this adjustment in our BUGS model from the previous
question by using an extra parameter (node) b.age in our model, and including the terms
b.age*agemgram1 and b.age*agemgram2 in the mean model for mammographic density
pdens1 and pdens2 in twins 1 and 2 respectively.

(a) Generate a starting value for b.age by regressing percent mammographic density on
age at mammogram in R using data from either twin 1 or twin 2 (or both if you’re
motivated to concatenate the data vectors).

(b) Use the starting value in part (a) to compile and run the BUGS model with adjustment
for age, and produce a summary table of the posterior distributions for the parameters
µ, σ2

a, σ
2
e , ρDZ:MZ and βage = b.age. Is there evidence for a linear relationship

between mammographic density and age at mammogram?

(c) Has the adjustment for age changed the posterior mean of ρDZ:MZ? Is the current
posterior mean for ρDZ:MZ consistent with an additive genetic model for
mammographic density?

4. Our final adjustment is to include weight in our regression model for mammographic
density which also includes age at mammogram. We include this variable in our BUGS model
in the same way as we did in the previous question for the agemgram variable: Use an extra
parameter (node) b.wgt in the model, and including the terms b.wgt*weight1 and
b.wgt*weight2 in the mean model for mammographic density pdens1 and pdens2 in twins
1 and 2 respectively.

(a) Generate a starting value for b.wgt by regressing percent mammographic density on
weight and age at mammogram in R using data from either twin 1 or twin 2 (or both if
you’re motivated to concatenate the data vectors).

(b) Use the starting value in part (a) to compile and run the BUGS model with adjustment
for weight, and produce a summary table of the posterior distributions for the
parameters µ, σ2

a, σ
2
e , ρDZ:MZ and βage = b.age and βweight = b.wgt. Is there evidence

for a linear relationship between mammographic density and weight adjusted for age at
mammogram?



2.10 Classical twin model in BUGS 43

(c) Has the adjustment for age changed the posterior mean of ρDZ:MZ? Is the current
posterior mean for ρDZ:MZ consistent with an additive genetic model for
mammographic density?
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2.11 Using the DIC in model comparison

In this exercise we work through an example that demonstrates the importance of defining the
focus (i.e. set of parameters) of a model comparison. This example is courtesy of Bob O’Hara and
appears on his website
deepthoughtsandsilliness.blogspot.com/2007/12/focus-on-dic.html

Suppose there are m = 10 groups of data (indexed by i = 1, . . . ,m) each with n = 50
observations (indexed by j = 1, . . . , n) that have been generated from the two-level
normal-normal hierarchical model:

Yij |θi ∼ N(θi, σ2)
θi|µi, τ ∼ N(µi, τ2)

We consider two models for the group-specific mean parameter µi:

Model 1: µi = µ+ β(i− 5.5)
Model 2: µi = µ

The first model has a covariate (equal to the identity number of the group) but the second has
none.

1. Use the R code to simulate data Yij according to the two models above (call them Data 1
and Data 2 respectively), and plot the data in each group along with the observed group
specific mean.

You should see from the plot that the effect of the covariate is clear, so the DIC should be able
to pick it up.

2. Fit each of the models to each of the two simulated data sets, using the R code to run the
WinBUGS models through R. Extract the DIC from each model and compare them. Is the
DIC lower for the model that includes the covariate when fitted to the data simulated using
the group-specific covariate, compared to fitting the model without the covariate?

You should have found that in both cases the DIC is the same (for most simulations the
difference is no higher than the third decimal place). But for the data simulated with a
group-specific covariate (Data 1), Model 1 should be better, as suggested by the earlier plots. So
what’s going on? We can get a clue from plotting the posteriors of µi for each of the groups, from
the two models.

3. Use the R code to plot the group-specific means for both Data 1 and Data2, with errors
bars (i.e. ± 1 posterior standard deviation), along with the 1:1 identity line.

Obviously the models are predicting the same means for the groups, and hence we will get the
same deviance (recall that we are talking about the plug-in deviance here which depends only on
the posterior means of the parameters on which we are focussing). We can see why this is
happening from the between-group or group-level standard deviations.

4. Use the output from the WinBUGS run to calculate the posterior mean and standard
deviation of the between-group or group-level standard deviation parameter τ for both
Model 1 and Model 2 applied to Data 1 and Data 2.

deepthoughtsandsilliness.blogspot.com/2007/12/focus-on-dic.html
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You should have found that for the data where there is a trend (Data 1), but none is fitted, the
posterior mean of τ is much larger. The lack of the linear trend is compensated by the increase in
variance. The difference is not in the model for θ at all, but occurs higher in the hierarchy at the
level of the hyperparameter µ where the effect of the group-specific covariate is incorporated into
the model.

This is obvious from looking at the models. In order for it to be reflected in a comparison of the
DIC between models, we need to change the focus, from θ to µ and β. This then means
calculating the marginal deviance, marginalising over θ, that is, looking at p(Y|µ, τ) after
integrating p(Y|θ) over p(θ|µ, τ). This can be done analytically, after which we find that the
deviance can be calculated because we know the distribution of the group-specific sample mean
Y i. =

∑n
j=1Yij/n, which is

Y i. ∼ N(µi, σ2/n+ τ2). (2.8)

5. Recalculate the DIC for each dataset and each model using the functions provided in the
R code.

The results should now make more sense. For the data with a covariate effect for the mean
model (Data 1), the DIC massively favours the correct model. Without the effect in the data, the
DIC is pretty similar for the two models. In both cases, also note that pD is larger by 1 for the
model with 1 extra parameter, as expected.

What lessons can we draw from this? Firstly, that DIC is not an automatic panacea - it must
be focussed on the right part of the model. If the focus is not at the level immediately above the
data (i.e. θ here), then you can’t use the DIC given by BUGS. In this example it is more difficult to
get at the correctly focussed DIC (in fact you have to calculate it manually yourself, or at least
use Bob O’Hara’s R function to do so). For more complex models this might be awkward, since if
there are no analytical results, then the parameters to be integrated out have to be simulated, for
example by Markov chain Monte Carlo.

Some comments from Martyn Plummer:
This example encourages you to think about what DIC is trying to do. It’s not about finding

the “true” model - both models are true in fact - it’s about accurately predicting dropped
observations.

In the simulated data, there are 50 observations in each group. If you drop one observation and
then tried to predict it, you already have plenty information from the other 49 observations in the
same group that share the same mean, and you have 489 degrees of freedom to estimate the
variance. The group-level covariate really doesn’t add much to your ability to make that
prediction.

Changing the focus to the group level, you are dropping a whole group and then trying to
predict the 50 observations in it. In this case, the group-level covariate is very useful. Here DIC
parts company with the penalized plug-in likelihood since we have around 3 effective parameters
and only 10 independent observations! You’d most likely be better off using the “corrected” DIC
proposed in the Discussion of Plummer (2008). Although the calculations haven’t been done
explicitly, the substantive conclusions must surely be the same.
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2.12 Measurement comparison in oximetry

A common problem in medical statistics is assessing the extent to which a new technique for
measuring a biological quantity gives results that agree with a more established method of
measurement. An important example arises in oximetry which is the measurement of the
saturation or concentration of oxygen in the blood. Patients who are critically ill are unable to
send enough oxygen into the bloodstream and the level of oxygen saturation is monitored as an
indicator of the severity of the patient’s condition. The traditional method of measurement uses a
sample of blood on which a chemical analysis is performed to determine the level of various gases
in the blood (“co-oximetry”). A much more convenient, newer, method uses a device called a
pulse oximetry, which relies on a small sensor placed on a finger or toe to measure oxygen
saturation by measuring the reflectance of light through the blood vessels.

A study was done at the Royal Children’s Hospital in Melbourne to examine the agreement
between pulse oximetry and co-oximetry in small babies, many of whom were especially sick and
therefore had oxygen saturation levels lower than those usually available to test the accuracy of
pulse oximetry. The data file (ox.dat or ox.csv) contains 4 variables on a total of 61 babies.

Variable name Description

item Subject identifier
repl Number of sample (replicate)
co Oxygen saturation (%) by co-oximetry
pulse Oxygen saturation (%) by pulse oximetry

There were 61 babies in the study, each contributed up to 3 samples, but in a few cases only
one or two measurements were available; in total there are 177 observations.

1. To begin with we model the differences dir for the rth sample (replicate) (r = 1, 2, 3) on the
ith infant as normally distributed: dir ∼ N (δ, σ2). Note that in this case we ignore the
clustering within subjects and analyze the data as 177 independent observations of the
differences.

The simplest model is one with a mean difference between methods (the average difference)
and a standard deviation of this differences:

dir ∼ N (δ, σ2)

(a) Fit the model using lm. What is mean difference, and what is the standard deviation
of this?

(b) If we use uninformative priors for σ2, and δ i.e. p(σ2) ∝ σ−2 and p(δ) ∝ 1. What is the
posterior distribution p(σ2|dir) under the above assumptions? Calculate a 95%
posterior interval for σ2.
Hint: See section 3.2 of Bayesian Data Analysis.

(c) What is the posterior distribution p(δ|dir)? Calculate a 95% posterior interval for δ.

(d) Define this model in BUGS with the uninformative priors, and run it. The data are
available as ox.dat or ox.csv from the course homepage. These file can be read into R
by read.table and raed.csv, respectively.
How do the results agree with what you found above?

(e) Derive 95% posterior intervals for both δ and σ2 using the BUGS output.
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(f) The 95% range of agreement is defined as δ ± 2σ, a prediction interval for a future
difference between methods. Now introduce these limits as nodes agree.lo and
agree.hi in the BUGS code, and re-run it. Is this necessary?

(g) Suppose we have a prior distribution for the mean δ that is N(0, 1.52) (i.e., we would
be surprised if a device like this was systematically biased by more than 3%) and
continue to use the standard noninformative prior on σ2.
Compare the posterior in this case with the previously obtained. Does the informative
prior distribution for δ have any impact on the posterior distribution for σ2?

2. So far we have regarded the three observations on each infant as independent. But since
they are from the same child, it is likely that they are correlated. Moreover, as the
measurements are taken at three different time (in pairs of co and pulse) the measurements
taken at the same time are likely to be similar.

We therefore first introduce a subject-specific effect µi shared by all measurements on the ith

infant:

yco,ir = µi + eco,ir

ypulse,ir = µi + δ + epulse,ir

where emij ∼ N(0, σ2
m), m = co, pulse. Note that the error terms for the two methods are

different as it would rather daft to assume that me measurement error were the same for the
two.

(a) What is distribution of dir = yco,ir − ypulse,ir under this model?

(b) Amend the BUGS code to accommodate this model A suitable noninformative prior
distribution for σm is a uniform distribution on [0,K], where K is a suitably large
number (recall that the posterior will also have finite support in this case. Run the
model.

(c) Generate and display posterior summaries of the estimated standard deviations. I
there strong evidence that one of these residual standard deviation is bigger than the
other? Does extending the model in this way influence our inference about δ?

3. The previous model allows separate residual variances for the two measurement errors, but
the model still assumes exchangeability of replicates within methods. But the replicates are
linked ; they are taken at three different timepoints, so they measure something potentially
slightly different — there may be a time-to-time variability within the infant which is
common for the two methods, so we try to incorporate this via a random effect air with
variance ω2:

yco,ir = µi + air + eco,ir

ypulse,ir = µi + δ + air + epulse,ir

(a) Modify your BUGS code to accomodate this new variance component. You wil also need
to supply the replicate number repl in the data and in the code you will need the refer
to the singe random effects by using nested indexing as a[i,meth[i]].

(b) Make a traceplot for the resulting mcmc.list. What is your conclusion — has the
chains converged?

(c) Make a pairwise scatter plot of the parameters in the model. Use as.matrix to get a
matrix of the posterior samples that you can stuff into pairs. What is your conclusion?
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(d) The model can also be fitted by conventional methods, in this case we resort to lme.
For this you must first stack the data, and then invoke the arcane syntax of lme:
> oxl <- data.frame( y = c(oxw$co,oxw$pulse),
+ repl = factor( rep(oxw$repl,2) ) ,
+ id = factor( rep(oxw$item,2) ),
+ meth = factor( rep(c("co","pulse"),each=177) ) )
> library( nlme )
> m1 <- lme( y ~ meth + id,
+ random = list( id = pdIdent( ~ repl-1 ) ),
+ weights = varIdent( form = ~1 | meth ),
+ data = oxl,
+ control = lmeControl(returnObject=TRUE) )
> m1

4. The difference in means between the two methods of measurement may not be the same for
all levels of oxygen saturation. The simplest way to allow for this is to introduce a linear
relationship between the means:

yco,ir = µi + eco,ir

ypulse,ir = α+ βµi + epulse,ir

Note that for β = 1 this is the earlier model.

(a) Extend the BUGS model to include the linear relationship between means. Use a
noninformative prior distribution for α, but constrain β to lie between 0 and 2 (it must
be positive and the “null” value for constant mean difference between methods is
β = 1).
Generate and display posterior summary statistics for α and β. Is there strong
evidence against the null hypothesis that β = 1?

(b) In the previous question we used co-oximetry as the reference method, with µi as the
mean for yco,ir. We might as well have chosen pulse-oximetry as the reference method
and re-expressed the model as

yco,ir = α? + β?µi + eco,ir

ypulse,ir = µi + epulse,ir

Change the BUGS code to use pulse-oximetry as the reference method, using the same
prior distributions for α? and β? as were used for α, β and µi. Provide summaries of
the posterior distribution of α∗ and β∗.

(c) What are the relations between (α, β) and (α?, β?)? Check whether the relation holds
between the results from the two previous fits of the model.

(d) Compare the results for α and β frrom the two previous models with the results of
regressing co on pulse and vice-versa.

5. In order to get the model right we must reformulate it so that it is symmetric in the two
methods:

yco,ir = αco + βco(µi + air) + eco,ir

ypulse,ir = αpulse + βpulse(µi + air) + epulse,ir

Formally this is the same model as the two above, but the conversion it is formulatred
symmetrically in the parameters. However it is also over-parametrized.
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(a) How are the means of the two methods related in this model?

(b) (Can be omitted) What happens to the αs and βs if the µs are linearly transformed?
Try to reparaetrize µi = a+ bξi and express the model in the same form using the ξis.
How does this influence the way the means of the two methods are related?

(c) Modify your BUGS program to fit this model and run it.

(d) Check the mixing of the chains using xyplot and inspect the two-dimensional
posteriors using pairs(as.matrix()) on the resulting mcmc.list object.

(e) How do the posterior means relate to the two sets of regression parameters previously?

(f) Check the convergence of the chains graphically and numerically

(g) Formulate a conclusion regarding the two methods of measurement.
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Chapter 3

Solutions

3.1 Bayesian inference in the binomial distribution

1. In the discrete case we just set up a vector if the same length as the prior — we know that
the likelihood and posterior only are defined in the points where the prior is positive.

(a) In Rwe just do the computations according to the rules, and the print the vector side
by side corresponding to the table in the exercise:
> theta <- c(2,4,6,8)/10
> prior <- c(1,1,1,1)/4
> x <- 1
> n <- 1
> like <- dbinom( x, n, theta )
> like.pr <- prior * like
> post <- like.pr / sum( like.pr )
> round( cbind( theta, prior, like, like.pr, post ), 3 )

theta prior like like.pr post
[1,] 0.2 0.25 0.2 0.05 0.1
[2,] 0.4 0.25 0.4 0.10 0.2
[3,] 0.6 0.25 0.6 0.15 0.3
[4,] 0.8 0.25 0.8 0.20 0.4

Not surprising, the posterior is proportional to the likelihood when we use a uniform
prior as in this case. And since the likelihood is maximal for theta = 1, we get the
maximal posterior probability for θ = 0.8, the largest possible value.

(b) If we had 20 trials and 15 successes we just change the value of x and n in the code:
> theta <- c(2,4,6,8)/10
> prior <- c(1,1,1,1)/4
> x <- 15
> n <- 20
> like <- dbinom( x, n, theta )
> like.pr <- prior * like
> post <- like.pr / sum( like.pr )
> round( cbind( theta, prior, like, like.pr, post ), 3 )

theta prior like like.pr post
[1,] 0.2 0.25 0.000 0.000 0.000
[2,] 0.4 0.25 0.001 0.000 0.005
[3,] 0.6 0.25 0.075 0.019 0.298
[4,] 0.8 0.25 0.175 0.044 0.697

We see the same patterns as before. The 0 posterior for θ = 0.2 is not an exact 0; it is
just a consequence of rounding:

51
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> round( cbind( theta, prior, like, like.pr, post ), 17 )

theta prior like like.pr post
[1,] 0.2 0.25 1.664729e-07 4.161823e-08 6.645594e-07
[2,] 0.4 0.25 1.294494e-03 3.236234e-04 5.167614e-03
[3,] 0.6 0.25 7.464702e-02 1.866175e-02 2.979907e-01
[4,] 0.8 0.25 1.745595e-01 4.363988e-02 6.968411e-01

(c) If we expand the set of support points for the prior (and hence also for the posterior,
should get an expansion of the support for the posterior too. But if x 6= 0, then the
likelihood at θ = 0 is 0, since this value of θ corresponds to a situation where an event
never occurs. Likewise if x 6= n the likelihood at θ = 1 is 0, since this corresponds to a
situation where an event always occurs.
If we have x = 15 and n = 20, the the likelihood at the two outer points will be the
same and the posterior will also be the same (because the prior at the “remaining
points” is the same as before, bar a constant:
> theta <- c(0,2,4,6,8,10)/10
> prior <- c(1,1,1,1,1,1)/6
> x <- 15
> n <- 20
> like <- dbinom( x, n, theta )
> like.pr <- prior * like
> post <- like.pr / sum( like.pr )
> round( cbind( theta, prior, like, like.pr, post ), 3 )

theta prior like like.pr post
[1,] 0.0 0.167 0.000 0.000 0.000
[2,] 0.2 0.167 0.000 0.000 0.000
[3,] 0.4 0.167 0.001 0.000 0.005
[4,] 0.6 0.167 0.075 0.012 0.298
[5,] 0.8 0.167 0.175 0.029 0.697
[6,] 1.0 0.167 0.000 0.000 0.000

(d) If we only have a singe positive trial, we will however have a positive likelihood at
θ = 1:
> theta <- c(0,2,4,6,8,10)/10
> prior <- c(1,1,1,1,1,1)/6
> x <- 1
> n <- 1
> like <- dbinom( x, n, theta )
> like.pr <- prior * like
> post <- like.pr / sum( like.pr )
> round( cbind( theta, prior, like, like.pr, post ), 3 )

theta prior like like.pr post
[1,] 0.0 0.167 0.0 0.000 0.000
[2,] 0.2 0.167 0.2 0.033 0.067
[3,] 0.4 0.167 0.4 0.067 0.133
[4,] 0.6 0.167 0.6 0.100 0.200
[5,] 0.8 0.167 0.8 0.133 0.267
[6,] 1.0 0.167 1.0 0.167 0.333

2. In the continuous case we use the Beta-distribution, which is also available in R, so it is
straightforward to do the same calculations as above. However we cannot just print the
values of the prior, the likelihood and the posterior at the supported values, because the
support is now the entire interval [0, 1]. Hence we compare by making graphs with an x-axis
form 0 to 1.

(a) The formulae given in the exercise immediately lend themselves to implementation in
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R:
m =

a

a+ b
⇔ a = m(a+ b)

s =

√
m(1−m)
a+ b+ 1

⇔ a+ b =
(
m(1−m)/s2

)
− 1

The only thing we need to supply are the desired values of m and s:
> m <- 0.4
> s <- 0.1
> a.plus.b <- m*(1-m)/s^2 - 1
> a <- m * a.plus.b
> b <- a.plus.b - a
> c(m,s,a,b)

[1] 0.4 0.1 9.2 13.8

(b) For these values of a and b we can just use the Beta-density implemented in the dbeta
function in R to plot the desired prior distribution function:
> # Points where we plot:
> p <- seq(from=0,to=1,length=100)
> # Graph of the prior
> plot( p, dbeta( p, a, b ), lwd=4, bty="n", type="l" )

(c) For an observation of x = 15 out of n = 20 we use the dbinom function with the
probability p as the argument to plot the likelihood:
> x <- 15
> n <- 20
> plot( p, dbinom( x, n, p ), lwd=4, bty="n", type="l" )

(d) We know that the posterior is a Beta-distribution with parameters a+ x and b+ n− x,
so this is just as easily implemented in R:
> plot( p, dbeta( p, a+x, b+n-x ), lwd=4, bty="n", type="l" )

(e) In order to see how the three relate we collect the three plots in one frame:
> par( mfcol=c(3,1) )
> plot( p, dbeta( p, a, b ), lwd=4, bty="n", type="l" )
> plot( p, dbinom( x, n, p ), lwd=4, bty="n", type="l" )
> plot( p, dbeta( p, a+x, b+n-x ), lwd=4, bty="n", type="l" )

which is slightly primitive; a more beefed-up version would be:
> par( mfcol=c(3,1), mar=c(3,3,0,0) )
> plot( p, dbeta( p, a, b ), lwd=4, bty="n", type="l" )
> text( par("usr")[1], par("usr")[4], "\n Prior", adj=c(0,1) )
> plot( p, dbinom( x, n, p ), lwd=4, bty="n", type="l" )
> text( par("usr")[1], par("usr")[4], "\n Likelihood", adj=c(0,1) )
> plot( p, dbeta( p, a+x, b+n-x ), lwd=4, bty="n", type="l" )
> text( par("usr")[1], par("usr")[4], "\n Posterior", adj=c(0,1) )

The results of these two approaches are shown side-by-side in figure 2e.

(f) In order to illustrate the effect of variations in the prior and the data we wrap the
calculations, and the graphing of the three functions in an R-function. The
text-function draws text on the plot so it is possible to trace the parameters in the
various plots.
> Bayes.ill <-
+ function( m, s, x, n, ... )
+ {
+ p <- seq(0,1,,1000)
+ a.plus.b <- m*(1-m)/s^2 - 1
+ a <- m * a.plus.b
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+ b <- a.plus.b - a
+ plot( p, dbeta( p, a, b ), lwd=4, bty="n", type="l", ... )
+ text( par("usr")[1], par("usr")[4],
+ paste("\n Prior\n m=", m, ",s=", s,
+ "\n a=", a,", b=", b), adj=c(0,1) )
+ plot( p, dbinom( x, n, p ), lwd=4, bty="n", type="l", ... )
+ text( par("usr")[1], par("usr")[4],
+ paste("\n Likelihood\n n=", n,", x=",x), adj=c(0,1) )
+ plot( p, dbeta( p, a+x, b+n-x ), lwd=4, bty="n", type="l", ... )
+ text( par("usr")[1], par("usr")[4],
+ paste("\n Posterior\n Beta(", a+x, ",", b+n-x, ")"), adj=c(0,1) )
+ }

Note the argument “...” which allows us to pass extra parameters on the the plot
statements. This function produces three plots, so when using it it will be convenient
to set up a layout of plots using for example par(mfcol=c(3,2), which gives a 3 by 2
matrix of graphs, filled column-wise. The mar= argument governs the whitespace
around the single plot frames, and we use col=gray(0.5) to plot the curves in gray so
that any text on top of them will be visible:

> par( mfcol=c(3,2), mar=c(2,4,0,0) )
> Bayes.ill( 0.4, 0.2, 15, 20, col=gray(0.5) )
> Bayes.ill( 0.4, 0.1, 15, 20, col=gray(0.5) )

> par( mfcol=c(3,2), mar=c(2,4,0,0) )
> Bayes.ill( 0.4, 0.2, 55, 100, col=gray(0.5) )
> Bayes.ill( 0.4, 0.1, 75, 100, col=gray(0.5) )

The results of these statements are shown in figure 2f.

3. The fraction of female births in most societies is around 48.7%. A reasonable prior would be
one that is centered around 50% with a spead that is effectively s̊a large that is will
encompass even extreme deviations form the expected mean.
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Figure 3.1: Prior, likelihood and posterior for the binomial model. The right hand side is just the
beefed-up version of the plot.
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(a) If we use a Beta(100,100) We can either make a numeric calculation for the probability
that a Beta(100,100) variate is between 0.4 and 0.6:
> pbeta( 0.6, 100, 100 ) - pbeta( 0.4, 100, 100 )

[1] 0.9956798

or do a more brutal computation using a random sample:
> zz <- rbeta( 10000, 100, 100 )
> mean( zz<0.6 & zz>0.4 )

[1] 0.996

So we are indeed more than 95% certain that the true fraction of girls is between 40
and 60%!

(b) If we see 511 boys out of 1000 births, we can use the previous function to illustrate how
the the prior, likelihood and posterior look in this problem. Note that we use the “...”
argument to pass on a limitation of the x-axis:
> a <- b <- 100
> m <- a/(a+b)
> s <- sqrt(m*(1-m)/(a+b+1))
> par( mfcol=c(3,1), mar=c(4,2,0,0) )
> Bayes.ill( m, s, 511, 1000, xlim=c(0.4,0.6), xlab="% male births" )
> abline(v=0.5)

(c) The posterior probability that the fraction of female births i larger than 0.5 is the same
the probability that the fraction of male births is < 0.5, is just a cumulative probability
in the posterior distribution which is Beta(611,589):
> pbeta(0.5,611,589)

[1] 0.2626087

i.e. the prior and the data translates into a posterior probability of 26%. We see that
the prior has a limited influence; a flat prior (Beta(1,1)) would have resulted in a
posterior with parameters (511,489), and a smaller posterior probability:
> pbeta(0.5,512,490)

[1] 0.2434263
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Figure 3.2: Prior, likelihood and posterior for the binomial model for different combinations of
prior information and data. Large amounts of data makes the likelihood the dominant factor; and
a narrow prior (strong beliefs!) makes the prior the dominant factor.
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Figure 3.3: Prior, likelihood and posterior for the binomial model for 511 births out of 100, using
a Beta(100,100) prior. It is immediately apparent that the prior has very little influence on the
posterior — all the information is in the likelihood, i.e. the data.
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3.2 Simple linear regression with BUGS

First we load all the required packages for this practical:

> library( R2WinBUGS )
> library( BRugs )
> library( Epi )
> # Get a function to convert bugs objects to mcmc.list objects
> source("../r/PDAwBuR.r")

1. Define and plot the bogus data and inspect the output from the linear regression analysis:

Call:
lm(formula = y ~ x)

Residuals:
1 2 3 4 5 6

-0.09524 0.87619 -0.15238 -1.18095 -0.20952 0.76190

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.06667 0.78153 0.085 0.93612
x 1.02857 0.20068 5.125 0.00686

Residual standard error: 0.8395 on 4 degrees of freedom
Multiple R-squared: 0.8679, Adjusted R-squared: 0.8348
F-statistic: 26.27 on 1 and 4 DF, p-value: 0.00686

The estimates of α and β are 0.067 and 1.029, and the estimate of σ is 0.840.

2. In order to use BUGS we set up the data, initial values (for three chains) and the list of
parameters to monitor:

> reg.dat <- list( x=x, y=y, I=6 )
> reg.ini <- list( list( alpha=0.05, beta=1.0, sigma=0.9 ),
+ list( alpha=0.04, beta=1.1, sigma=1.0 ),
+ list( alpha=0.06, beta=0.9, sigma=1.1 ) )
> reg.par <- c("alpha","beta","sigma" )

Finally we need to specify the model in BUGS code, using the names we specified for the data
in reg.dat.

> cat( "model
+ {
+ for( i in 1:I )
+ {
+ y[i] ~ dnorm(mu[i],tau)
+ mu[i] <- alpha + beta*x[i]
+ }
+ alpha ~ dnorm(0, 1.0E-6)
+ beta ~ dnorm(0, 1.0E-6)
+ sigma ~ dunif(0,100)
+ tau <- 1/pow(sigma,2)
+ }",
+ file="reg.bug" )

With these specifications we can now use bugs() to run the MCMC:

> reg.res <- bugs( data = reg.dat,
+ inits = reg.ini,
+ param = reg.par,
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+ model = "reg.bug",
+ n.chains = 3,
+ n.iter = 20000,
+ n.burnin = 10000,
+ n.thin = 5,
+ program = "openbugs",
+ clearWD = TRUE )

Initializing chain 1: Initializing chain 2: Initializing chain 3:

> reg.res <- mcmc.list.bugs( reg.res )

The summary of the posterior distributions of the parameters can now be obtained by the
summary function and compared to the parameter estimates from the standard regression
model:

> summary( reg.res )

Iterations = 1:2000
Thinning interval = 1
Number of chains = 3
Sample size per chain = 2000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
alpha 0.08685 1.5141 0.019547 0.04242
beta 1.01921 0.3827 0.004941 0.01133
sigma 1.33536 0.8064 0.010411 0.03663
deviance 17.94922 4.3351 0.055966 0.19367

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
alpha -2.9151 -0.6429 0.08433 0.7934 2.940
beta 0.2597 0.8441 1.02312 1.2069 1.770
sigma 0.5447 0.8393 1.11413 1.5487 3.525
deviance 12.9271 14.7187 16.78715 20.0112 29.016

> ci.lin( m0 )

Estimate StdErr z P 2.5% 97.5%
(Intercept) 0.06666667 0.7815329 0.08530245 9.320209e-01 -1.4651096 1.598443
x 1.02857143 0.2006791 5.12545318 2.968229e-07 0.6352476 1.421895

> summary( m0 )$sigma

[1] 0.839501

It is seen that the ML estimates and the posterior means / medians are in fairly good
agreement whereas the estimate of σ is pretty far away from the posterior mean / median.
This is partly due to the fact that the dataset have 6 observations and hence virtually no
information about the residual standard deviation.

3. If we try to do the parallel analysis of a real dataset with some 500 obeservations we must
make sure that there are no missing values in the x-variable.

From the births dataset we will use y =bweight and x = gestwks− 35. We can use almost
the same code as for the small bogus dataset:
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> data( births )
> births <- subset( births, !is.na(gestwks) )
> dim( births )

[1] 490 8

> mb <- lm( bweight ~ I(gestwks-35), data=births )
> summary( mb )

Call:
lm(formula = bweight ~ I(gestwks - 35), data = births)

Residuals:
Min 1Q Median 3Q Max

-1698.403 -280.136 -3.639 287.610 1382.239

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2404.902 38.504 62.46 <2e-16
I(gestwks - 35) 196.973 8.788 22.41 <2e-16

Residual standard error: 449.7 on 488 degrees of freedom
Multiple R-squared: 0.5073, Adjusted R-squared: 0.5062
F-statistic: 502.4 on 1 and 488 DF, p-value: < 2.2e-16

> bth.dat <- list( x=births$gestwks-35,
+ y=births$bweight,
+ I=nrow(births) )
> bth.ini <- list( list( alpha=2400, beta=200, sigma=400 ),
+ list( alpha=2300, beta=150, sigma=450 ),
+ list( alpha=2500, beta=250, sigma=500 ) )
> bth.par <- c("alpha","beta","sigma" )
> cat( "model
+ {
+ for( i in 1:I )
+ {
+ y[i] ~ dnorm(mu[i],tau)
+ mu[i] <- alpha + beta*x[i]
+ }
+ alpha ~ dnorm(0, 1.0E-6)
+ beta ~ dnorm(0, 1.0E-6)
+ sigma ~ dunif(0,10000)
+ tau <- 1/pow(sigma,2)
+ }",
+ file="bth.bug" )
> bth.res <- bugs( data = bth.dat,
+ inits = bth.ini,
+ param = bth.par,
+ model = "bth.bug",
+ n.chains = 3,
+ n.iter = 20000,
+ n.burnin = 10000,
+ n.thin = 5,
+ program = "openbugs",
+ clearWD = TRUE )

Initializing chain 1: Initializing chain 2: Initializing chain 3:

> bth.res <- mcmc.list.bugs( bth.res )
> summary( bth.res )
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Iterations = 1:2000
Thinning interval = 1
Number of chains = 3
Sample size per chain = 2000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
alpha 2401.8 39.195 0.50600 0.80773
beta 197.6 8.947 0.11550 0.19494
sigma 450.8 14.835 0.19152 0.32648
deviance 7378.2 2.581 0.03332 0.05495

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
alpha 2326.4 2375.6 2401.9 2428.7 2478.4
beta 179.9 191.6 197.5 203.6 215.0
sigma 423.3 440.5 450.2 460.8 480.7
deviance 7375.3 7376.3 7377.5 7379.3 7384.6

> ci.lin( mb )

Estimate StdErr z P 2.5% 97.5%
(Intercept) 2404.9021 38.504320 62.45798 0 2329.4351 2480.3692
I(gestwks - 35) 196.9726 8.788133 22.41348 0 179.7482 214.1971

We now get a much better accordance between the regression estimates and the posterior
means / medians and also for the confidence intervals. The latter is of course because the
residual standard deviation is now much more precisely determined. The moral is of course
that with more data you get more precision.
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3.3 Examples of the Gibbs sampler and Metropolis Hastings
algorithm

1. (a) Let θ = (θ1, θ2) be the mean vector, which we know has a multivariate normal

posterior distribution with mean y = (y1, y2) and covariance matrix
(

1 ρ
ρ 1

)
. If we

let U = θ1 and V = θ2 then we can use result (A.1) on page 579 of BDA, which states
that p(U |V ) is univariate normal with

E(U |V ) = E(U) + cov(V,U)var(V )−1(V − E(V ))
var(U |V ) = var(U)− cov(V,U)var(V )−1cov(U, V ))

Substituting in the expectations, variances and covariances conditional on y into the
right hand sides of these expressions gives the following results:

E(θ1|θ2, y) = E(θ1|y) + cov(θ2, θ1|y)var(θ2|y)−1(θ2 − E(θ2|y))
= y1 + ρ× 1× (θ2 − y2)
= y1 + ρ(θ2 − y2)

var(θ1|θ2, y) = var(θ1|y)− ρ× var(θ2|y)−1 × ρ
= 1− ρ× 1× ρ
= 1− ρ2.

The result for θ2 follows by symmetry.

(b) Gibbs Sampler.

2. For the Metropolis-Hastings bivariate proposal distribution example, here’s some summary
plots of the sample paths.
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Figure 3.4: Metropolis-Hastings sample paths

A plot of the dependencies using the pacf and acf functions.

The acceptance probability increases slightly as the correlation parameter decreases since
the proposal distribution is getting closer to the target distribution.

3. For the single component Metropolis–Hastings sampler, here’s some summary plots of the
sample paths.

And a plot of the acceptance probabilities:
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Figure 3.5: Metropolis-Hastings — autocorrelations
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Figure 3.6: Single component Metropolis-Hastings — sample paths

Plotting the two series x1 and x2 against each other in a scatter plot is a good way to see
how the length of the jumps depends on the standard deviation of the proposal distribution.
The jumps get longer when the standard deviation of the proposal distribution increases.

Finally we check the dependencies within each of the x1 and x2 series by using the pacf and
acf functions.
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Figure 3.7: Metropolis-Hastings acceptance probabilities
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Figure 3.8: Scatter plot of x1 and x2.
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Figure 3.9: Single component Metropolis-Hastings — autocorrelations
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3.4 Estimating a rate from Poisson data

Asthma deaths in Australia (cf Section 2.7 of Bayesian Data Analysis pages 53-55).

1. We need to work out the posterior distribution for θ based on this data. Using results from
lectures (pages 53-54 of Gelman et al.), we find that the posterior distribution using a
gamma(3,5) prior will be gamma(3+y,5+x) where y = 3 is the number of deaths and x = 2
is the number of people (in units of 100,000 since θ is expressed in these units). Thus the
posterior is gamma(6,7). The posterior probability that θ > 2 based on the gamma(3,5)
prior and data of 3 deaths in 200,000 people is very low, about 0.5%. This was calculated
using the BUGS code in the file asthma.odc and is based on 5,000 burn-in iterations and
5,000 further samples for summary:

node mean sd 2.5% median 97.5% start sample

lambda 1.705 0.7003 0.6306 1.612 3.321 5001 5000
postprob 0.0052 0.07192 0.0 0.0 0.0 5001 5000
theta 0.8527 0.3501 0.3153 0.8058 1.66 5001 5000

2. The relevant BUGS code can be found in the file asthma2.odc. The node postprob counts
the number of iterations for which the sampled value of the original rate parameter in
question 1 (θ1 or theta[1]) is greater than the value of the parameter corresponding to the
Australian rate (θ2 or theta[2]). The posterior mean of this node is an estimate of the
posterior probability that the difference θ1 − θ2 > 0, which we see from the following output
is very small, only about 0.7%:

node mean sd 2.5% median 97.5% start sample

lambda[1] 1.72 0.7045 0.6449 1.619 3.391 5001 5000
lambda[2] 390.1 19.43 353.0 389.6 429.6 5001 5000
postprob 0.007 0.08337 0.0 0.0 0.0 5001 5000
theta[1] 0.8599 0.3522 0.3225 0.8097 1.695 5001 5000
theta[2] 1.951 0.09713 1.765 1.948 2.148 5001 5000

3. The sampling error associated with estimating the death rate from a population of 200,000
will be very much less than the error with which we can estimate the rate in a population of
20,000,000 - but only because the rates are fairly similar and therefore the number of events
recorded in the latter population is so much larger (and this is what determines the
standard error of a rate estimate). So for our purposes the latter rate can be thought of as
fixed since it is the former rate that contributes most of the uncertainty. The BUGS code in
the files asthma2.odc allows us to execute this example, as shown above in question 2. The
same gamma(3,5) prior distribution was used for the rate in each population, resulting in
posterior means for the rate per 100,000 persons per year of 0.86 and 1.95 respectively. The
standard deviations of these posterior distributions are 0.352 and 0.097 respectively,
reinforcing the argument about larger populations with similar death rates leading to more
events and less uncertainty about the underlying rate.

4. We can certainly view the seven years worth of data as i.i.d. realisations of a Poisson random
variable with mean determined by the (fixed) rate theta (per 100,000) and the population
size (which we will assume is constant at 20 million). To do this in WinBUGS, simply set
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up the outcome y as a vector with seven components (so y[i] for i in 1 to 7) and declare
y[i] ∼ dpois(lambda[i]) where the mean lambda[i] <- (n[i]/100000)*theta[i].

The problem with this simple model is that the number of deaths per year due to asthma is
clearly decreasing over time, and there could well be enough information in the data to
generate statistical evidence for such a trend. We could model the rate as a linear function
of time alpha + beta*time, as suggested in the airline example of exercises 2.13 and 3.12
and demonstrated in exercise 6a of the current course. By examining the posterior
distribution for the slope parameter beta we can determine whether there is much evidence
to support a declining rate of death due to asthma in Australia in the last few years. It is
straightforward to express the rate theta[i] in terms of time: theta[i] <- alpha +
beta*time[i] where time is the number of years since 1997. alpha and beta can take
noninformative prior distributions (see the bioassay example section 3.7 of the textbook).

If we had further information we may even consider clustering, using information about
asthma deaths by region or some other categorical exposure variable across which we might
expect rates to vary. This would be an ideal scenario for the use of hierarchical modelling,
where we assume variation in model parameters at each level of the hierarchy (individual,
region, country etc.). We’ll cover this is detail in subsequent lectures and exercises.
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3.5 Estimating the speed of light

Normal distribution with unknown mean and variance (Section 3.2 of Bayesian Data
Analysis pages 77-78).

1. The 95% posterior credible interval is obtained from the t65 (the degrees of freedom are
n− 1 = 66− 1 = 65) marginal posterior distribution of µ as y ± 1.997s/

√
66 = (23.6, 28.8),

which follows directly from the fact that a 95% credible interval for the pivotal quantity
(µ− y)/(s/

√
n) is (-1.997,1.997), since the 97.5% point of the t-distribution with 65 degrees

of freedom is 1.997137.

2. Based on 1000 simulated values of (µ, σ2), Gelman et al. estimated the posterior median of
µ to be 26.2 and a 95% central posterior interval for µ to be (23.6, 28.9), which is quite close
to the analytically calculated interval. Executing the R code repeatedly (say a dozen times)
generates values for the posterior median of µ that are usually very close to 26.2. The lower
and upper limits of the credible interval are more variable, and can differ from the quoted
values above by ±0.2 across even a small number of runs (simulating 1,000 values each time).

3. Sample output from the BUGS model:

node mean sd 2.5% median 97.5% start sample

mu 26.19 1.354 23.53 26.19 28.84 10001 10000
sigma 10.96 0.9943 9.238 10.89 13.08 10001 10000
smallest 0.3858 5.681 -12.38 1.003 9.92 10001 10000

4. The original BUGS code has been amended by including the syntax

y.pred[i] ~ dnorm(mu,tau)

immediately under the existing statement in the “for” loop defining the distribution of the
observed data y. Since there is no observed data for the (vector) node y.pred, BUGS
simulates from the specified distribution using the current sampled values of mu and tau as
required. We monitor the minimum value of the predicted vector y.pred by defining a node
called smallest:

smallest <- ranked(y.pred[],1)

where the ranked function sorts the elements of its first argument (in this case y.pred) and
returns the kth smallest where k is the value of its second argument. In this case k = 1 so
the node smallest does indeed contain the minimum value from our predictive sample of 66
new observations. A posterior summary of this node:

node mean sd 2.5% median 97.5% start sample

smallest 0.3858 5.681 -12.38 1.003 9.92 10001 10000

A minimum value of -2 (the observed second smallest value in our sample) is quite likely
since it falls close to the middle of the 95% range for such minimum values. However the
observed minimum of -44 is very much smaller than 95% of sampled minimum values and
suggest that the normal model does not do a good job of capturing the variation that
Newcomb observed.
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3.6 Modelling the rate of airline fatalities 1976 to 2001

1. (a) The model for the data is:
yi|θ ∼ Poisson(θ)

where θ is the expected number of fatal accidents in a year.
If the prior distribution for θ is (Γ(α, β) then the posterior distribution is
Γ(α+ ny, β + n), where in this case n = 26 and ny =

∑26
i=1 yi = 634:

> airline <- read.csv( "../data/airline.csv" )
> str( airline )

'data.frame': 26 obs. of 5 variables:
$ year1975: int 1 2 3 4 5 6 7 8 9 10 ...
$ year : int 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 ...
$ fatal : int 24 25 31 31 22 21 26 20 16 22 ...
$ miles : num 3.86 4.30 5.03 5.48 5.81 ...
$ rate : num 6.21 5.81 6.17 5.66 3.78 ...

> sum( airline$fatal )

[1] 634

> dim( airline )

[1] 26 5

A noninformative gamma prior distribution has (α, β) = (0, 0). This is not a proper
distribution — the Γ-density is:

f(θ) =
βα

Γ(α)
θα−1e−βx

so setting (α, β) = (0, 0) specifies a density proportional to 1/θ, which is really not
possible since

∫ +∞
0 1/θ dθ = +∞. A density proportional to 1/θ corresponds to a flat

prior on 1/θ.
However, provided the product of the prior and the likelihood results in a proper
posterior distribution for θ, (which it does in this case) we can use it.
The posterior distribution is:

θ|y ∼ Γ(634, 26)

and thus the posterior mean for θ is (α+ ny)/(β + n) = 634/26 = 24.385.

(b) Let ỹ be the number of fatal accidents in 2002. Given θ, the predictive distribution for
ỹ is Poisson(θ). The derivation on pages 52 and 53 of Bayesian Data Analysis show
that the prior predictive distribution for y is:

p(y) =
p(y|θ)p(θ)
p(θ|y)

=
Poisson(y|θ)gamma(θ|α, β)

gamma(θ|α+ y, β + 1)

=
Γ(α+ y)βα

Γ(α)y!(1 + β)α+y

=
(
α+ y + 1

y

)(
β

β + 1

)α( 1
β + 1

)y
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which is the negative binomial density:

y ∼ Neg-bin(α, β)

For the uninformative prior (i.e. with (α, β) = 0, 0), this is actually not a distribution,
but what we actually want is the posterior predictive distribution for the number of
fatal accidents in 2002, that is, the predictive distribution conditioning on the available
data from 1976 to 2001. This has the same form as p(y) presented above but we must
replace α and β with the posterior quantities α? = α+ ny = 0 + 634 = 634 and
β? = β + n = 0 + 26 = 26.

(c) The posterior distribution for θ is θ|y ∼ Gamma(634, 26), and the conditional
distribution of ỹ (the number of fatal accidents in 2002) is Poisson(θ). So to simulate
values of ỹ all we need to do is first generate a realized value from the posterior
distribution of θ and secondly sample a value from the Poisson distribution using the
realized value of θ as the mean. Iterating this process will generate values of ỹ from the
posterior predictive distribution. What we are doing here is integrating numerically,
using simulation, over the posterior distribution of θ.
This can actually be accomplished in R:
> theta <- rgamma(1000, 634, 26 )
> y.2002 <- rpois(1000,theta)
> hist( y.2002 )

The default histogram is not impressive; it’s actually better to explicitly plot the table
of the realized values for y2002:
> plot( table(y.2002), type="h", lwd=5, lend=2, col=gray(0.5), bty="n", ylab="" )

(d) The model can also be specified in BUGS, and run using the bugs() function from
R2WinBUGS. Besides the model we need starting values and a specification of data:
> library(BRugs)
> library(R2WinBUGS)
> source("../r/mcmc.list.bugs.r")
> cat( "model
+ {
+ for( i in 1:I )
+ {
+ fatal[i] ~ dpois(mu)
+ }
+ mu ~ dgamma(0,0)
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Figure 3.10: Posterior predictive distribution of y2002 — the number of fatal airline crashes in 2002.
Left panel the default hist() and right panel the result of plot( ..., type="h").
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+ }",
+ file="a1.bug" )
> a1.ini <- list( list( mu=22 ),
+ list( mu=23 ),
+ list( mu=24 ) )
> a1.dat <- list( fatal = c(airline$fatal,NA), I=27 )
> a1.res <- bugs( data = a1.dat,
+ inits = a1.ini,
+ param = c("mu","fatal[27]"),
+ model = "a1.bug",
+ n.chains = 3,
+ n.iter = 30000,
+ n.burnin = 20000,
+ n.thin = 5,
+ program = "openbugs",
+ debug = FALSE,
+ clearWD = TRUE )

Initializing chain 1: Initializing chain 2: Initializing chain 3:

> # Convert the resulting bugs object, a1.res, to a mcmc.list object
> a1.mcl <- mcmc.list.bugs( a1.res )
> summary( a1.mcl )

Iterations = 1:2000
Thinning interval = 1
Number of chains = 3
Sample size per chain = 2000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
mu 24.38 0.967 0.01248 0.01411
deviance 156.23 1.374 0.01773 0.01761
fatal[27] 24.49 5.049 0.06519 0.06426

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
mu 22.55 23.69 24.37 25.04 26.30
deviance 155.24 155.34 155.71 156.56 160.11
fatal[27] 15.00 21.00 24.00 28.00 35.00

The summary of the resulting object shows that the posterior mean and median of the
µ is about 24.37. This is also the posterior expectation of the predictive distribution
for the number of fatal accidents in 2002, represented by the node fatal[27].
The posterior predictive distribution for the number of fatal accidents in 2002 has
median 24 and 95% posterior interval [15,35]. Recall that the posterior predictive
distribution is a discrete distribution. We can compare this with the one we simulated
directly before:
> theta <- rgamma(6000, 634, 26 )
> y.2002 <- rpois(6000,theta)
> plot( table(y.2002), type="h", lwd=5, lend=2, col=gray(0.2), bty="n",
+ ylab="", xlim=c(5,50) )
> tpr <- table( as.matrix( a1.mcl[,"fatal[27]"] ) )
> points( as.numeric(names(tpr))+0.4, tpr, type="h", col="red", lwd=4 )

2. (a) Let mi = number of passenger miles flown in year i and λ = accident rate per
passenger mile. The model for the data is yi|mi, λ ∼ Poisson(miλ). We use the
noninformative Γ(0, 0) prior distribution for λ as we did for µ previously.
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The posterior distribution for λ is λ|y,m ∼ Γ(nȳ, nm̄) = Γ(634, 275.56) where
nm̄ =

∑26
i=1mi:

> sum( airline$miles )

[1] 275.564

Note that the model is invariant under scaling of m in the sense that if the ms are
divided by a factor K then λ is multiplied by K. In this exercise we have used the ms
in the units of 1011miles as they are given in the file airline.csv.

(b) Given λ, the predictive distribution for ˜y2002 is Poisson(λm2002) = Poisson(2× 1012λ).
The posterior predictive distribution for ỹ will be (related to the) negative binomial
but the algebra is more complex due to the presence of the 2× 1012 scale factor based
on the number of miles flown. SO we let BUGS do the hard work — you can see that
the change to the BUGS code is rather minimal.
Note that we as before add an extra NA value to the vector of fatalities, and in order to
get a predictive distribution for this an anticipated value for the number of miles flown,
in this case 20 (×1011).
Also note that you cannot stick an expression in as an argument to a distribution; an
expression as fatal[i] dpois(lambda*miles[i]) will cause an error.
> cat( "model
+ {
+ for( i in 1:I )
+ {
+ mu[i] <- lambda * miles[i]
+ fatal[i] ~ dpois( mu[i] )
+ }
+ lambda ~ dgamma(0,0)
+ }",
+ file="a2.bug" )
> a2.ini <- list( list( lambda=10 ),
+ list( lambda=20 ),
+ list( lambda=30 ) )
> a2.dat <- list( fatal=c(airline$fatal,NA),
+ miles=c(airline$miles,20), I=27 )
> a2.res <- bugs( data = a2.dat,
+ inits = a2.ini,
+ param = c("lambda","fatal[27]"),
+ model = "a2.bug",
+ n.chains = 3,
+ n.iter = 30000,

0
10

0
20

0
30

0
40

0
50

0

y.2002

9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

Figure 3.11: Posterior predictive distribution of y2002 — the number of fatal airline crashes in 2002.
Gray bars are directly simulated, red bars are the posterior from BUGS output.
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+ n.burnin = 20000,
+ n.thin = 5,
+ program = "openbugs",
+ debug = FALSE,
+ clearWD = TRUE )

Initializing chain 1: Initializing chain 2: Initializing chain 3:

> # Convert the resulting bugs object, a1.res, to a mcmc.list object
> a2.mcl <- mcmc.list.bugs( a2.res )
> summary( a2.mcl )

Iterations = 1:2000
Thinning interval = 1
Number of chains = 3
Sample size per chain = 2000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
lambda 2.302 0.091 0.001175 0.001197
deviance 314.089 1.421 0.018349 0.018196
fatal[27] 45.968 7.078 0.091371 0.092724

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
lambda 2.131 2.238 2.301 2.363 2.481
deviance 313.100 313.191 313.566 314.439 317.985
fatal[27] 33.000 41.000 46.000 51.000 60.000

The posterior expectation of the predictive distribution for the number of fatal
accidents in 2002 is 46 and the 95% posterior interval is [33,60].

3. (a) A closer inspection of the number of fatal airline crashes can be dome by:
> par(mfrow=c(1,2))
> with(airline, plot( year, fatal, pch=16, type="b", ylim=c(0,32), bty="n" ) )
> with(airline, plot( year, rate, pch=16, type="b", ylim=c(0,7), bty="n" ) )

There is a decrease on average over the ten year period 1976 to 1985. The fatal
accident rate per mile flown over the 26 year period shows a more consistently
decreasing trend that looks amenable to modelling using a (possibly exponentially
transformed) simple first order function of time.

(b) The mean of a Poisson random variable must be positive, so modelling the mean as a
linear function of time, that is, E(y|µ) = µ = α+ β(t− 1990) has the potential to
generate negative values for µ and thus a mean for our sampling distribution that is
outside the parameter space.
In this case it seems to work, however, because the chains never get to generate a
negative value of any of the mu[i]s:
> cat( "model
+ {
+ for( i in 1:I )
+ {
+ mu[i] <- (alpha + beta*(i-10)) * miles[i]
+ fatal[i] ~ dpois( mu[i] )
+ }
+ alpha ~ dnorm(0,0.000001)
+ beta ~ dnorm(0,0.000001)
+ }",
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+ file="a3.bug" )
> a3.ini <- list( list( alpha=10, beta=-0.5 ),
+ list( alpha=20, beta=-0.6 ),
+ list( alpha=30, beta=-0.4 ) )
> a3.dat <- list( fatal=c(airline$fatal,NA),
+ miles=c(airline$miles,20), I=27 )
> a3.res <- bugs( data = a3.dat,
+ inits = a3.ini,
+ param = c("alpha","beta","fatal[27]"),
+ model = "a3.bug",
+ n.chains = 3,
+ n.iter = 60000,
+ n.burnin = 30000,
+ n.thin = 5,
+ program = "openbugs",
+ debug = FALSE,
+ clearWD = TRUE )

Initializing chain 1: Initializing chain 2: Initializing chain 3:

> # Convert the resulting bugs object, a1.res, to a mcmc.list object
> a3.mcl <- mcmc.list.bugs( a3.res )
> summary( a3.mcl )

Iterations = 1:6000
Thinning interval = 1
Number of chains = 3
Sample size per chain = 6000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
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Figure 3.12: The numbers (left) and rates (right) of fatal airline accidents.
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alpha 3.4442 0.15820 0.0011792 0.0103472
beta -0.1671 0.01367 0.0001019 0.0009072
deviance 153.6645 1.99588 0.0148764 0.1094958
fatal[27] 12.1082 4.28900 0.0319683 0.1048590

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
alpha 3.1423 3.3350 3.4470 3.5471 3.7767
beta -0.1951 -0.1757 -0.1675 -0.1577 -0.1411
deviance 151.6868 152.2167 153.0656 154.4615 158.9318
fatal[27] 5.0000 9.0000 12.0000 15.0000 21.0000

Finally we can take a look at traces of the three chains used in this analysis (see figure
4f):
> print( xyplot( a3.mcl[,1:2] ) )

4. A more natural model is the multiplicative one

log
(

E
(
y(t)|t,m(t)

))
= α+ βt+ log(m(t)) (3.1)

(a) The simple linear regression approach to the model is to regress the log-rate on the
year:
> summary( lm( log( fatal/miles ) ~ I(year-1985), data=airline ) )

Call:
lm(formula = log(fatal/miles) ~ I(year - 1985), data = airline)

Residuals:
Min 1Q Median 3Q Max

-0.46628 -0.14912 0.04327 0.14137 0.37938

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.163059 0.044640 26.05 < 2e-16
I(year - 1985) -0.069878 0.005394 -12.96 2.52e-12

Residual standard error: 0.2063 on 24 degrees of freedom
Multiple R-squared: 0.8749, Adjusted R-squared: 0.8697
F-statistic: 167.8 on 1 and 24 DF, p-value: 2.518e-12

which shows that rates decrease about 7% per year (exp(β̂)− 1).
This model puts equal weight on all observations regardless of the number of fatalities
seen, so a proper Poisson-model would presumably be more appropriate.

(b) The relevant Poisson model is one where the log of the mean is linear, as indicated in
the formula (3.1) above. The log of the miles is a regression variable, but with no
coefficient, i.e. with a regression coefficient fixed at 1. This is a so-called offset-variable:
> summary( glm4 <- glm( fatal ~ I(year-1985) + offset(log(miles)),
+ family=poisson, data=airline ) )

Call:
glm(formula = fatal ~ I(year - 1985) + offset(log(miles)), family = poisson,

data = airline)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.0782 -0.7953 0.1626 0.7190 1.9370

Coefficients:
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Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.176111 0.043200 27.23 <2e-16
I(year - 1985) -0.068742 0.005394 -12.74 <2e-16

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 182.628 on 25 degrees of freedom
Residual deviance: 22.545 on 24 degrees of freedom
AIC: 157.02

Number of Fisher Scoring iterations: 4

This is pretty much the same results as those from the linear regression of the log-rates.

(c) We can now fit the same model using BUGS, by a suitable modification of the code from
before:
> cat( "model
+ {
+ for( i in 1:I )
+ {
+ mu[i] <- exp( alpha + beta*(i-10) ) * miles[i]
+ fatal[i] ~ dpois( mu[i] )
+ }
+ alpha ~ dnorm(0,0.000001)
+ beta ~ dnorm(0,0.000001)
+ }",
+ file="a4.bug" )
> a4.ini <- list( list( alpha=1.0, beta=-0.05 ),
+ list( alpha=1.5, beta=-0.06 ),
+ list( alpha=0.5, beta=-0.04 ) )
> a4.dat <- list( fatal=c(airline$fatal,NA),
+ miles=c(airline$miles,20), I=27 )
> a4.res <- bugs( data = a4.dat,
+ inits = a4.ini,
+ param = c("alpha","beta","fatal[27]"),
+ model = "a4.bug",
+ n.chains = length(a4.ini),
+ n.iter = 60000,
+ n.burnin = 30000,
+ n.thin = 5,
+ program = "openbugs",
+ debug = FALSE,
+ clearWD = TRUE )

Initializing chain 1: Initializing chain 2: Initializing chain 3:

> # Convert the resulting bugs object, a1.res, to a mcmc.list object
> a4.mcl <- mcmc.list.bugs( a4.res )
> summary( a4.mcl )

Iterations = 1:6000
Thinning interval = 1
Number of chains = 3
Sample size per chain = 6000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
alpha 1.17481 0.043152 3.216e-04 4.004e-04
beta -0.06884 0.005383 4.012e-05 4.519e-05
deviance 155.01529 1.968451 1.467e-02 1.714e-02
fatal[27] 20.18817 4.801404 3.579e-02 3.692e-02



3.6 Modelling the rate of airline fatalities 1976 to 2001 77

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
alpha 1.08897 1.14617 1.17506 1.20422 1.2588
beta -0.07942 -0.07252 -0.06879 -0.06514 -0.0584
deviance 153.06887 153.60032 154.39702 155.80386 160.2556
fatal[27] 12.00000 17.00000 20.00000 23.00000 30.0000

If we compare the results with those from the generalized linear model:
> library( Epi )
> ci.lin( glm4 )

Estimate StdErr z P 2.5% 97.5%
(Intercept) 1.17611148 0.043199710 27.22499 0 1.09144161 1.26078136
I(year - 1985) -0.06874189 0.005393721 -12.74480 0 -0.07931339 -0.05817039

we see that the asymptotic 95% c.i.s from this model are virtually identical to the 95%
posterior interval from the BUGS simulation.

(d) The mixing of the chains for α and β is checked using xyplot on the resulting
mcmc.list object. This is placed alongside the corresponding plot for the model with
linear trend in the rates:
> print( xyplot( a4.mcl[,1:2] ) )

(e) The mixing of the chains for α and β can also be checked by checking whether the
densities based on each of the chains look similar:
> print( densityplot( a4.mcl[,1:2], aspect="fill" ) )

Likewise, we may simply plot the simulated values for α and beta against each other
with different colors:
> mat4 <- as.matrix( a4.mcl, chains=TRUE )
> # permute the rows to get the colors better mixed in the plot
> mat4 <- mat4[sample(1:nrow(mat4)),]
> plot( mat4[,"alpha"], mat4[,"beta"],
+ pch=16, cex=0.3, col=rainbow(3)[mat4[,"CHAIN"]] )

(f) If we want the posterior of the expected number of airline fatalities in 2002 (assuming
the the amount of flown miles is 20× 1012), we are asking for the posterior of
exp(α+ β × (2002− 1985))× 20:
> a4.m <- as.matrix(a4.mcl)
> enum.2002 <- exp(a4.m[,"alpha"] + a4.m[,"beta"]*17)*20
> summary( enum.2002 )

Min. 1st Qu. Median Mean 3rd Qu. Max.
14.25 18.97 20.11 20.16 21.29 27.73

> ( e2002.qnt <- quantile( enum.2002, probs=c(50,2.5,97.5)/100 ) )

50% 2.5% 97.5%
20.10864 16.95509 23.62512

A plot of the posterior density of this can be obtained using the density function:
> plot( density(enum.2002), type="l", lwd=3 )
> abline( v=e2002.qnt )

(g) The node fatal[27] contains the predictive distribution for the number of fatal
accidents in 2002. Its posterior mean is 20.04 (similar to that for the expected number
of fatal accidents in 2002) with a standard deviation of 4.864 and 95% interval [11,30].
We can plot the distribution of this by:
> plot( table(a4.m[,"fatal[27]"]),
+ type="h", lwd=5, lend=2, col=gray(0.5), bty="n", ylab="" )
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As an aside, the actual figures for 2002, 2003 and 2004 are shown in table 3.1. Note
that the guess that 20× 1011 miles would be flown in 2002 was almost spot on!
Secondly, the actual number of fatal accidents was 14, less than the 20 predicted from
our final model in question 3, but well within the prediction interval of (11,30). Finally,
the rate in 2002 (0.708) was similar to that in 2001 (0.676, which was the lowest rate
for the series up to that time), but the rates in the final two year 2003 and 2004
(0.3004 and 0.4433 respectively) are about half as great as those in the previous two
years. Since 1976, the rate of fatal accidents per air mile flown has decreased by an
order of magnitude, that is, it is ten times lower.

(h) To produce the posterior predictive distribution of the number of fatalities in 2002,
based on the maximum likelihood estimates from the generalized liner model above, we
would simulate the log-rate based on an assumption of multivariate normality of the
estimates, or rather based on normality of the parameter function α+ β(2002− 1985).
Then we simulate a random number from this, take the exponential and multiply by 20
to get a random sample from the posterior mean. Finally we would simulate a Poisson
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Figure 3.13: Traceplots of chains from the linear model (left) and the log-linear model (right). For
two of the chains in the linear model there is clearly some kind of boundary problems, as two of the
chains stay in the same state for longer periods of time.
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Table 3.1: Worldwide airline fatalities, 2002–2004. “Passenger miles” are in units of 1011 and the
“Accident rate” is the number of fatal accidents per 1011 passenger miles. Source: International
Civil Aviation Organization, Montreal, Canada (www.icao.int)

Fatal Passenger Accident
Year accidents miles rate

2002 14 19.775 0.7080
2003 7 23.300 0.3004
2004 9 20.300 0.4433

variate with this mean:
> # ci.lin gives the estimate and its sd. for a linear combination of parameters
> mn.sd <- ci.lin( glm4, ctr.mat=rbind(c(1,2002-1985)) )[1:2]
> N <- 1000
> log.rate <- rnorm( N, mean=mn.sd[1], sd=mn.sd[2] )
> e.num <- exp( log.rate ) * 20
> p.num <- rpois( N, e.num )
> summary( p.num )

Min. 1st Qu. Median Mean 3rd Qu. Max.
6.00 17.00 20.00 19.92 23.00 39.00

> quantile( p.num, probs=c(50,2.5,97.5)/100 )

50% 2.5% 97.5%
20 11 30

> # For comparison we make the same summary for the posterior sample
> quantile( a4.m[,"fatal[27]"], probs=c(50,2.5,97.5)/100 )

50% 2.5% 97.5%
20 12 30
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Figure 3.14: Marginal densities (left) and joint distribution (right) for alpha and beta from the
multiplicative model. Results from different chains have different colours.
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Figure 3.15: Posterior density of the expected number of airline fatalities in 2002 (left) and the
posterior predicted number of fatalities in 2002.
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3.7 Assessing convergence using the Gelman-Rubin diagnostic
— Using coda in R

1. Table 3.2 shows the value of the Gelman-Rubin potential scale reduction factor R̂ for each
of 10 runs of the schools model on three occasions using 100, 300 and 500 iterations.

For the simulation runs using only 100 iterations, several of the runs (eg numbers 2, 9 and
10) return consistently high values for R̂ (greater than 1.2) for all nodes, and several other
runs (such as run 1) have large values of R̂ for three or more nodes. The nodes mu.theta
and sigma.theta record values of R̂ more frequently than the theta[j] nodes, so inference
about these nodes (the parameters µθ and σθ) would benefit from a larger number of
iterations.

Increasing the number of iterations to 300 improves the values of R̂ for the node mu.theta
but the node sigma.theta still has 4 out of 10 runs with values of R̂ that are greater than
1.2. Although this frequency decreases to only 2 out of 10 when the number of iterations is
increased to 500, it is clear that the node sigma.theta is having the greatest trouble
converging and would benefit from a larger number of iterations. In 10 runs with 1000
iterations, none had a value of R̂ for the node sigma.theta greater than 1.20, but three
were more than 1.15 (the values were 1.01, 1.02, 1.09, 1.10, 1.10, 1.11, 1.12, 1.15, 1.17, 1.19).
This suggests that the number of iterations should be increased several times, perhaps to
5,000, to ensure proper mixing of the simulation chains.
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Node Run number
n = 100 1 2 3 4 5 6 7 8 9 10
theta[1] 1.02 2.13 1.03 1.03 1.04 1.17 1.07 1.05 1.42 1.18
theta[2] 1.06 1.85 1.00 1.10 1.03 1.16 1.11 1.04 1.11 1.12
theta[3] 1.32 1.85 1.01 1.11 1.07 1.17 1.08 1.05 1.17 1.19
theta[4] 1.10 1.72 1.03 1.08 1.08 1.21 1.16 1.08 1.21 1.12
theta[5] 1.29 1.88 1.07 1.06 1.12 1.09 1.13 1.05 1.14 1.18
theta[6] 1.09 1.55 1.00 1.19 1.06 1.14 1.13 1.07 1.13 1.14
theta[7] 1.12 1.86 1.01 1.12 1.02 1.08 1.07 1.08 1.37 1.19
theta[8] 1.05 1.89 1.04 1.12 1.07 1.06 1.13 1.05 1.23 1.19
mu.theta 1.18 2.28 1.10 1.31 1.11 1.27 1.21 1.09 1.24 1.15
sigma.theta 1.34 1.20 1.06 1.14 1.14 1.07 1.52 1.15 3.53 1.73
n = 300
theta[1] 1.03 1.03 1.03 1.04 1.10 1.01 1.06 1.03 1.04 1.02
theta[2] 1.03 1.04 1.02 1.03 1.10 1.04 1.03 1.01 1.06 1.02
theta[3] 1.07 1.02 1.04 1.04 1.15 1.06 1.04 1.02 1.05 1.03
theta[4] 1.06 1.05 1.01 1.08 1.13 1.04 1.10 1.01 1.01 1.04
theta[5] 1.08 1.02 1.04 1.04 1.30 1.04 1.03 1.03 1.02 1.02
theta[6] 1.07 1.02 1.03 1.04 1.16 1.04 1.06 1.01 1.01 1.04
theta[7] 1.06 1.06 1.04 1.06 1.10 1.03 1.06 1.06 1.01 1.03
theta[8] 1.04 1.02 1.02 1.06 1.10 1.03 1.05 1.05 1.03 1.03
mu.theta 1.10 1.04 1.02 1.08 1.11 1.10 1.09 1.07 1.06 1.06
sigma.theta 1.49 1.16 1.40 1.03 2.91 1.30 1.12 1.10 1.07 1.17
n = 500
theta[1] 1.00 1.04 1.02 1.06 1.05 1.04 1.03 1.00 1.05 1.01
theta[2] 1.00 1.03 1.03 1.02 1.04 1.06 1.03 1.01 1.05 1.01
theta[3] 1.00 1.01 1.02 1.03 1.01 1.08 1.03 1.00 1.01 1.01
theta[4] 1.00 1.01 1.02 1.02 1.01 1.06 1.04 1.02 1.03 1.01
theta[5] 1.02 1.00 1.02 1.04 1.02 1.07 1.02 1.01 1.03 1.03
theta[6] 1.01 1.02 1.02 1.04 1.01 1.06 1.03 1.01 1.04 1.01
theta[7] 1.01 1.02 1.07 1.08 1.03 1.05 1.04 1.02 1.03 1.01
theta[8] 1.02 1.02 1.01 1.04 1.01 1.06 1.03 1.00 1.04 1.01
mu.theta 1.00 1.04 1.02 1.01 1.06 1.11 1.06 1.02 1.06 1.02
sigma.theta 1.00 1.09 1.08 1.33 1.12 1.29 1.01 1.04 1.06 1.15

Table 3.2: Values of the Gelman-Rubin potential scale reduction factor R̂ from 10 runs of the
schools model for each of 100, 300 and 500 simulations.
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3.8 Meta-analysis of clinical trial data

Most of the calculations required for question 1-3 are detailed in the Microsoft Excel spreadsheet
mag_solutions.xls although they could easily be performed in R as well.

1. The standard pooled-effect analysis estimates a log odds ratio of -0.4058 and a standard
deviation of 0.1278, corresponding to an odds ratio of OR = 0.67 (95% credible interval
from 0.52 to 0.86).

2. (a) The value of Q is 10.07056 on 8 - 1 = 7 degrees of freedom. This corresponds to a
P-value of 0.185, so no evidence against the null hypothesis of homogeneity.

(b) The value of τ̂2 is 0.1258, so τ̂ = 0.3547. Contrast this with the profile likelihood (see
the question sheet and lectures for more detail and a graph), showing that the maximum
likelihood estimator of τ2 is zero.

3. It is straightforward to perform these calculations manually, and they appear in the Excel
spreadsheet. The output from running the BUGS model is as follows

node mean sd 2.5% median 97.5%

mu.theta -0.6182 0.266 -1.139 -0.6176 -0.09215
theta[1] -0.6381 0.4587 -1.547 -0.6417 0.2677
theta[2] -0.8372 0.3174 -1.458 -0.8368 -0.2078
theta[3] -0.7569 0.423 -1.576 -0.7549 0.0608
theta[4] -0.5774 0.4695 -1.5 -0.5773 0.3394
theta[5] -0.2657 0.3486 -0.941 -0.2642 0.4344
theta[6] -0.8492 0.4493 -1.734 -0.8451 0.02965
theta[7] -0.6871 0.4522 -1.576 -0.6862 0.2027
theta[8] -0.338 0.1406 -0.6076 -0.3394 -0.06238

(a) The trail specific posterior means for the treatment effect have been shrunk from the
empirical estimates of the log odds ratios based on the data from individual trials towards
the overall effect. The extent of the shrinkage is given by the factor Bj in table 1 of the
question sheet. Note also that the individual trials have narrower posterior credible intervals
for the trial-specific treatment effects under the random effects model than the pooled
model.

(b) The posterior mean of µ is -0.6182 with a posterior standard deviation of 0.266. It is less
precise than the estimate based on the fixed-effects model, but still is “significantly” less
than 1; the estimated odds ratio is 0.54 (95% interval from 0.32 to 0.90).

4. The output from re-compiling the BUGS model with a uniform(0,1000) prior distribution on
τ are shown below:

node mean sd 2.5% median 97.5%

mu.theta -0.6413 0.3718 -1.483 -0.5951 -0.01174
tau.theta 0.5976 0.4574 0.02919 0.5112 1.699
theta[1] -0.6536 0.6152 -2.022 -0.5818 0.529
theta[2] -0.8286 0.3751 -1.604 -0.8099 -0.1641
theta[3] -0.8167 0.5398 -2.025 -0.7377 0.06955
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theta[4] -0.5305 0.6321 -1.879 -0.5127 0.8285
theta[5] -0.1833 0.4061 -0.8839 -0.2314 0.7015
theta[6] -1.036 0.7195 -2.801 -0.8886 -0.02034
theta[7] -0.7489 0.6128 -2.203 -0.6561 0.3282
theta[8] -0.3378 0.1431 -0.6143 -0.3361 -0.05968

There has been minimal effect on the posterior mean of µθ, which has moved from -0.6182
to -0.6413, but its posterior standard deviation has increased markedly from 0.266 to 0.3718
to reflect the additional source variability implied by the prior distribution on τ rather than
assuming τ to be fixed. Values of θ furthest from µ show the greatest change in posterior
mean with the new prior distribution on τ .

The posterior mean for τ is now 0.5976. somewhat larger than the method of moments
estimate of 0.35 (and the maximum likelihood estimate of zero), due to the weight that the
prior density for τ assigns to large values of τ . Note, however, that the posterior standard
deviation for τ is 0.4574 and posterior 95% credible interval is (0.0292,1.699), suggesting
that the data are consistent with values of τ close to zero or alternatively several times
larger than any of the point estimates of this parameter.

5. The output from re-compiling the BUGS model with a uniform(0,1000) prior distribution on
τ and a “neutral” prior distribution on µ with mean 0 and standard deviation 0.40 are
shown below:

node mean sd 2.5% median 97.5%

mu.theta -0.3914 0.2414 -0.8611 -0.3948 0.109
tau.theta 0.5358 0.4249 0.01989 0.4421 1.64
theta[1] -0.4807 0.5419 -1.684 -0.4372 0.5634
theta[2] -0.7292 0.3694 -1.534 -0.6901 -0.1266
theta[3] -0.6439 0.4924 -1.784 -0.5664 0.1762
theta[4] -0.3564 0.576 -1.53 -0.3692 0.9451
theta[5] -0.1253 0.3869 -0.7713 -0.1868 0.7506
theta[6] -0.81 0.6397 -2.433 -0.6651 0.1031
theta[7] -0.5573 0.5594 -1.861 -0.4861 0.4743
theta[8] -0.3182 0.1391 -0.5893 -0.3205 -0.04158

The posterior mean for the overall treatment effect µ is now, on the log odds scale, -0.39
with a standard deviation of 0.24, corresponding to an odds ratio of exp(-0.39) = 0.68 with
95% credible interval (0.42,1.09). Note that this credible interval includes the null value of
1, and that there is a posterior probability of about 5.25% that the overall treatment effect
has an odds ratio of greater than 1 and is therefore harmful. The likelihood, “neutral” prior
and posterior are shown in figure 3.16. It might seem reasonable to find odds ratios below
0.5 extremely surprising (as the prior distribution for µ implies), and hence a random effects
meta-analysis and a neutral but nevertheless reasonably sceptical prior that rules out large
effects renders the meta-analysis somewhat unconvincing. This finding is reinforced by the
comment by Yusuf (1997) that “if one assumed that only moderate sized effects were
possible, the apparent large effects observed in the meta-analysis of small trials with
magnesium ... should perhaps have been tempered by this general judgment. If a result
appears too good to be true, it probably is.”
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Figure 3.16: A “neutral” prior distribution for µ (mean 0 and standard deviation 0.40 on the
log odd ratios scale) with the likelihood and posterior. The shaded region measures the posterior
probability (about 5.25%) that treatment with magnesium is actually harmful.
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3.9 Linear mixed models of fetal growth

1. A full listing of summary statistics (based on 20,000 iterations with the first 10,000
discarded as a burn-in) for all relevant nodes are as follows:

node mean sd 2.5% median 97.5%

Sigma2.beta[1,1] 0.6596 0.0756 0.5172 0.6574 0.8148
Sigma2.beta[1,2] -0.03406 0.004041 -0.04247 -0.03388 -0.02647
Sigma2.beta[2,1] -0.03406 0.004041 -0.04247 -0.03388 -0.02647
Sigma2.beta[2,2] 0.002115 2.23E-4 0.001697 0.002106 0.00259
mu.beta[1] -0.07925 0.04573 -0.1684 -0.07931 0.01276
mu.beta[2] 0.8681 0.002529 0.8631 0.8681 0.873
sigma.e 0.2198 0.003733 0.2125 0.2197 0.2274
sigma2.e 0.04833 0.001642 0.04517 0.04828 0.0517

The output from running the lme syntax

linmod <- lme(SQRTHC ~ 1 + TGA, data = hc, random = ~ 1 + TGA |
ID)

is as follows (using summary(linmod) to summarise the linear mixed model object linmod
in R):

> summary(linmod)
Linear mixed-effects model fit by REML
Data: hc

AIC BIC logLik
1244.966 1281.191 -616.4828

Random effects:
Formula: ~1 + TGA | ID
Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr
(Intercept) 0.81022411 (Intr)
TGA 0.04310524 -0.952
Residual 0.22146081

Fixed effects: SQRTHC ~ 1 + TGA
Value Std.Error DF t-value p-value

(Intercept) -0.0824472 0.04439328 2390 -1.8572 0.0634
TGA 0.8683515 0.00238587 2390 363.9560 0.0000

Correlation:
(Intr)

TGA -0.973

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max

-6.19611273 -0.49096149 0.02347426 0.51250700 3.92720260
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Number of Observations: 3097
Number of Groups: 706

Note that lme quotes the standard deviation instead of the variance for both the variances
of the random effects and the residual error variance. The corresponding variance parameter
estimates are Sigma2.beta[1,1] = 0.810224112 = 0.6564631, Sigma2.beta[2,2] =
0.043105242 = 0.001858062 and sigma2.e = 0.221460812 = 0.04904489. These values, along
with the fixed effect estimates for the intercept mu.beta[1] of -0.0824472 and for the
gradient mu.beta[2] of 0.8683515 are very similar to the posterior means of the relevant
nodes displayed above in the BUGS summary output.

2. (a) The posterior mean for the covariance of the random effect intercept and gradient (the
node Sigma2.beta[1,2]) is -0.03406. The posterior mean of the random effects
variance for the intercept and gradient (the nodes Sigma2.beta[1,1] and
Sigma2.beta[2,2] respectively) are 0.6596 and 0.002115. The estimated correlation of
the random effects intercept and gradient is thus
−0.03406/

√
0.6596 ∗ 0.002115 = −0.9119.

The interpretation of this negative correlation with large magnitude is that fetuses
with low values for the random effect (subject-specific) intercept tend to have high
values for the random effect (subject-specific) gradient. That is, fetuses that start with
(relatively) low head circumference (at about 18 weeks gestation) tend to show faster
growth rates than those that start with (relatively) high head circumferences. An
alternative interpretation is that the observed correlation structure of the data
(including any heteroscedasticity) is best captured by allowing a strong negative
correlation between the random effects.

(b) Summary statistics (based on 20,000 iterations with the first 10,000 discarded as a
burn-in) for the new node rancorr are as follows:

node mean sd 2.5% median 97.5%

rancorr -0.9111 0.01086 -0.9299 -0.9119 -0.8873

The posterior mean for rancorr of -0.9111 is very close to the value of -0.9119
calculated in part (a) of the question. The 95% posterior credible interval for the
correlation is (-0.9299,-0.8873), which is fairly narrow and does not suggest that there
is much evidence for anything other than a negative correlation quite close to -1.

(c) Recall that the model for Yij is

Yij = (β0 + u0i) + (β1 + u1i)Xij + εij .

If we add and subtract c from Xij and re-arrange we have

Yij = (β0 + u0i) + (β1 + u1i)(Xij − c+ c) + εij

= (β0 + u0i + (β1 + u1i)c) + (β1 + u1i)(Xij − c) + εij

= ((β0 + β1c) + (u0i + u1ic)) + (β1 + u1i)(Xij − c) + εij

= (β
′
0 + u

′
0i) + (β

′
1 + u

′
1i)X

′
ij + εij

where β
′
0 = β0 + β1c, β

′
1 = β1, u

′
0i = u0i + u1ic and u

′
1i = u1i. The covariance between
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u
′
0i and u

′
1i can be calculated as

cov(u
′
0i, u

′
1i) = cov(u0i + u1ic, u1i)

= cov(u0i, u1i) + cov(u1ic, u1i)
= cov(u0i, u1i) + cvar(u1i)
= σ01 + cσ2

1.

So the new random effects u
′
0i and u

′
1i will be uncorrelated if σ01 + cσ2

1 = 0, that is,
when c = −σ01/σ

2
1. The corresponding value of c in this case, using the posterior

means of σ01 and σ2
1 from above, is c = −(−0.03406/0.002115) = 16.10.

Note that centering the transformed gestational age (or any continuously valued
covariate) at its mean removes the correlation between the estimates of the fixed effect
intercept and gradient. In this case, however, the value of c = 16.10 required to remove
the correlation between the random effects intercept and slope is not close to the mean
of the transformed gestational age, which is X = 18.36.

3. (a) Summary statistics for the nodes Y[3099] and Y[3100], which contain the conditional
and unconditional transformed head circumference, are as follows:

node mean sd 2.5% median 97.5%

Y[3099] 17.59 0.4051 16.79 17.58 18.39
Y[3100] 18.33 0.4668 17.4 18.33 19.24

The difference in the conditional and unconditional posterior means is about 0.75,
almost twice the conditional posterior standard deviation of 0.4051, and larger than
the posterior standard deviation of the difference in these two means, which will be
around 0.6. The fact that the conditional posterior mean (for fetus id = 5) is smaller
than the unconditional posterior mean suggests that fetus id = 5 has a relatively low
value of transformed head circumference at 18 weeks gestation, which is reflected in the
lower mean calculated for the conditional distribution of the corresponding
measurement at 38 weeks.

(b) The observed value of transformed head circumference at 38.43 weeks for fetus id = 5
is 18.38, so the conditional z-score is z = (18.38− 17.59)/0.4051 = 1.950136,
corresponding to the 97.44th percentile of the standard normal distribution. Our
interpretation of this z-score is that the transformed head circumference measurement
for fetus id = 5 was much greater than expected given the relatively low value of the
corresponding measurement at 18 weeks. The corresponding z-score using the
unconditional values for the mean and standard deviation of transformed head
circumference at 38 weeks is z = (18.38− 18.33)/0.4668 = 0.107112, corresponding to
the 54.27th percentile of the standard normal distribution. Thus the observed value for
transformed head circumference for fetus id = 5 at 38 weeks gestation is unremarkable
compared to the unconditional distribution. This makes sense since a measure close to
the mean of the unconditional distribution (and thus an unconditional z-score of about
0) having started from a low base should be quite unusual, as reflected by the
conditional z-score of almost 2.

(c) For fetus id = 5 whose last measurement is at gestational age 38.43 weeks, the value
of the transformed gestional age is 21.20. The unconditional mean for transformed
head circumference is thus β0 + β1Xij = mu.beta[1] + mu.beta[2]*X = -0.07925 +
0.86871*21.20 = 18.32433, which is close to the posterior mean of 18.33 for the node



3.9 Linear mixed models of fetal growth 89

Y[3100] that represent the unconditional distribution of transformed head
circumference at 38.43 weeks gestational age.
The variance of a single observation, is a quadratic function of transformed gestional
age:

var(Yij) = var(u0i) + 2cov(u0i, u1i)Xij

+var(u1i)X2
ij + var(εij)

= σ2
0 + 2σ01Xij + σ2

1X
2
ij + σ2

ε .

The corresponding calculation with nodes from BUGS is

var(Y) = Sigma2.beta[1, 1] + 2× Sigma2.beta[1, 2]× X + Sigma2.beta[2, 2]× X2 + sigma2.e.

Substituting the posterior means for these nodes and the observed value of X, the
calculated variance is
0.6596 + 2×−0.03406× 21.20 + 0.002115× 21.202 + 0.04833 = 0.214352. The square
root of this is 0.462981 which is close to the posterior standard deviation of 0.4668 for
the node Y[3100] that represent the unconditional distribution of transformed head
circumference at 38.43 weeks gestational age.
It is possible to perform the calculations analytically (using formulae) for the
conditional distribution of transformed head circumference at 38.43 weeks gestational
age but they are a little more involved and we do not pursue them here.
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3.10 Classical twin model in BUGS

3.10.1 Risk factors for mammographic density using twin data

1. (a) Calculations reveal that empirically
1
2(var(yi1) + var(yi2)) = 1

2 × (453.29433 + 445.32099) = 449.30766 and that
1
2(var(yi1 − yi2)) = 1

2 × 364.81535 = 182.40767. The latter is an estimate of σ2
e , and

since theoretically 1
2(var(yi1) + var(yi2)) = σ2

a + σ2
e we can derive an estimate of σ2

a by
subtracting 1

2(var(yi1 − yi2)) from 1
2(var(yi1) + var(yi2)), which gives

449.30766− 182.40767 = 266.89999. We can generate starting values for σa and σe by
taking the square root of our variance estimates, giving 16.337074 and 13.505838
respectively. The sample means of pdens1 and pdens2 are 37.46824 and 36.57634
respectively, so a starting value for µ = mu of 37 would suffice.

(b) An output table of summary statistics appears below. The posterior mean (standard
deviation) of µ is 36.99 (0.62), for σ2

a is 267.30 (16.31) and for σ2
e is 183.20 (8.63).

node mean sd 2.5% median 97.5%

mu 36.99 0.617 35.83 36.96 38.24
sigma.a 16.34 0.4985 15.39 16.34 17.3
sigma.e 13.53 0.3186 12.95 13.53 14.17
sigma2.a 267.3 16.31 236.9 267.1 299.4
sigma2.e 183.2 8.634 167.7 182.9 200.8

(c) From our model, the within-pair correlation of yi1 and yi2 is ρ = σ2
a/(σ

2
a + σ2

e). We can
generate a point estimate of this correlation be replacing σ2

a and σ2
e by their posteriors

means, which gives ρ̂ = 267.3/(267.3 + 183.2) = 0.593341.

2. (a) A table of posterior summary statistics for the four parameters µ, σ2
a, σ

2
e and ρDZ:MZ

based on output from the BUGS model appears below.

node mean sd 2.5% median 97.5%

b.int 36.93 0.6109 35.85 36.88 38.18
rho 0.5973 0.05871 0.4871 0.5995 0.7032
sigma.a 18.04 0.5141 17.05 18.05 19.03
sigma.e 11.37 0.3501 10.71 11.36 12.1
sigma2.a 325.6 18.55 290.8 325.8 362.2
sigma2.e 129.4 7.977 114.6 129 146.3

(b) The posterior mean of σ2
a has increased from 267.3 to 325.6, and the posterior mean of

σ2
e has decreased from 183.2 to 129.4; their sum should be constant since we constrain
σ2
a and σ2

e to sum to the total variation of yij . Since σ2
a has increased, the original

model understated the within-pair correlation for MZ pairs and overstated the
corresponding quantity in DZ pairs. If we subsequently establish that there are genetic
factors governing mammographic density, then σ2

a would represent the “additive”
genetic variance which would have been understated by our original, naive analysis.

(c) The posterior mean of 0.5973 as our “best estimate” for ρDZ:MZ indicates that the
within-pair correlation is lower for DZ pairs than MZ pairs, which is certainly
consistent with the possible influence of genetic factors on mammographic density. The
posterior 95% credible interval for ρDZ:MZ is (0.4871,0.7032) so it does include (only



3.10 Classical twin model in BUGS 91

just!) the “null” value of 0.5 corresponding to the additive genetic model. The point
estimate of ρDZ:MZ = 0.5973 does not, however, describe an additive model.

3. (a) The (least squares) regression of percent mammographic density on age at
mammogram in twin 1 produces an estimated regression coefficient of -0.797795 (s.e.
0.0784475) percent per year of age; the corresponding estimated regression coefficient
in twin 2 is -0.7064001 (s.e. 0.0784852). So a starting value of -0.75 for βage = b.age
seems like a good choice. Note that the model compiles and runs without changing the
starting value of the intercept b.int from 37 to a more suitable value (say 76) based
on a regression model of percent mammographic density (pdens) on age at
mammogram (agemgram).

(b) A summary table of the posterior distributions for the parameters µ, σ2
a, σ

2
e , ρDZ:MZ

and βage = b.age based on output from the BUGS model appears below. The posterior
mean of b.age is -0.7618 (with standard deviation 0.06778 and 95% credible interval
(-0.8936,-0.6283)), so there is strong evidence against the null hypothesis that
mammographic density and age are unrelated. This is consistent with inference based
on the crude regression results in part (a) of the question.

node mean sd 2.5% median 97.5%

b.age -0.7618 0.06778 -0.8936 -0.7631 -0.6283
b.int 76.11 3.517 69.37 76.27 82.93
rho 0.5098 0.05045 0.4064 0.5089 0.6051
sigma.a 16.89 0.5179 15.90 16.89 17.83
sigma.e 11.26 0.3667 10.59 11.24 11.97
sigma2.a 285.4 17.49 252.8 285.4 318.1
sigma2.e 126.9 8.279 112.0 126.4 143.3

(c) The posterior mean of ρDZ:MZ is now 0.5098 (standard deviation 0.05045 with 95%
posterior credible interval of (0.4064,0.6051)), which is lower than the posterior mean
of 0.5973 quoted in the previous question. The posterior mean of ρDZ:MZ is now very
close to the value of 0.5 which would imply an additive genetic model for percent
mammographic density after adjusting for age.

4. (a) The (least squares) regression of percent mammographic density on weight adjusting
for age at mammogram in twin 1 produces an estimated regression coefficient of
-0.6230287 (s.e. 0.0434774) percent per kg increase in weight; the corresponding
estimated regression coefficient in twin 2 is -0.6647373 (s.e. 0.0449219). So a starting
value of -0.64 for βweight = b.wgt is reasonable. The regression coefficient for age at
mammogram in twin 1 is now -0.8008824 (s.e. 0.0711597) and for twin 2 is -0.7575204
(s.e. 0.0708611) so there is no need to change the starting value for βage = b.age.

(b) A summary table of the posterior distributions for the parameters µ, σ2
a, σ

2
e , ρDZ:MZ ,

βage = b.age and βweight = b.wgt based on the BUGS output appears below. The
posterior mean of βweight = b.wgt is -0.6273 with standard deviation 0.03447 and
posterior 95% credible interval (-0.6946,-0.5610), so there is strong evidence for a linear
relationship between mammographic density and weight adjusted for age at
mammogram.

node mean sd 2.50% median 97.50%
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b.age -0.7937 0.06114 -0.91 -0.7935 -0.6694
b.int 119.8 4.081 112.1 119.8 128.1
b.wgt -0.6273 0.03447 -0.6946 -0.6291 -0.561
rho 0.4412 0.06868 0.3145 0.4394 0.5731
sigma.a 14.88 0.4054 14.09 14.88 15.64
sigma.e 10.67 0.2974 10.08 10.66 11.23
sigma2.a 221.5 12.08 198.4 221.3 244.5
sigma2.e 113.9 6.342 101.7 113.7 126.2

(c) The adjustment for age changed the posterior mean of ρDZ:MZ from 0.5973 to 0.5098,
and the additional adjustment for weight has decreased the posterior mean further to
0.4412 (standard deviation 0.06868 and posterior 95% credible interval
(0.3145,0.5731)). Although the 95% posterior credible interval overlaps the “null” value
of 0.5, the point estimate (posterior mean) is no longer consistent with the additive
genetic model. It has been suggested that adjusting for weight “overcorrects” the model
since there is a very strong relationship between weight and non-dense area of breast
tissue (recall that mammographic density is the ratio of dense area to total area =
dense area + non-dense area).
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3.11 Using the DIC in model comparison

1. See the graph of the data and sample means in Figure 3.17.
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Figure 3.17: Individual data points and group-specific sample means for both datasets.

2. See Table 3.3.

Model Data DIC pD

1 1 1453.4 10.9
2 1 1453.3 10.9
1 2 1417.2 10.6
2 2 1417.6 10.9

Table 3.3: DIC and pD for both datasets and both models.

3. See the graph of the posterior means and standard deviations of the group-specific means µi
in Figure 3.18.

4. See Table 3.4.
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Figure 3.18: Posterior means and standard deviations of the group-specific means µi± 1 standard
deviation, for each dataset and each model.

Model Data Post. mean τ Post. s.d. τ

1 1 1.7 0.5
2 1 1.7 0.6
1 2 0.9 0.3
2 2 0.9 0.3

Table 3.4: Posterior mean and standard deviation of the between-group standard deviation τ for
both datasets and both models.

5. See Table 3.5.
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Model Data DIC pD

1 1 39.85 2.59
2 1 88.94 10.91
1 2 28.13 2.69
2 2 29.15 2.09

Table 3.5: DIC and pD for both datasets and both models with the focus changed from θ to µ and
τ .
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3.12 Measurement comparison in oximetry

1. The model we consider is one where there is fixed difference between the two methods:

y(co),ir − y(pulse),ir = dir ∼ N (δ, σ2)

(a) This is just a standard normal model with mean and standard deviation as parameters,
and so easily fitted in R:
> library( Epi )
> oxw <- read.table( "../data/ox.dat", header=TRUE )
> str(oxw)

'data.frame': 177 obs. of 4 variables:
$ item : int 1 1 1 2 2 2 3 3 3 4 ...
$ repl : int 1 2 3 1 2 3 1 2 3 1 ...
$ co : num 78 76.4 77.2 68.7 67.6 68.3 82.9 80.1 80.7 62.3 ...
$ pulse: int 71 72 73 68 67 68 82 77 77 43 ...

> m1 <- lm( I(pulse-co) ~ 1, data=oxw )
> summary( m1 )

Call:
lm(formula = I(pulse - co) ~ 1, data = oxw)

Residuals:
Min 1Q Median 3Q Max

-19.0226 -3.5226 -0.4226 3.1774 29.8774

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.4774 0.4642 -5.337 2.88e-07

Residual standard error: 6.176 on 176 degrees of freedom

A 95% confidence interval for the mean differnce can be found using ci.lin from the
Epi package:
> ci.lin( m1 )

Estimate StdErr z P 2.5% 97.5%
(Intercept) -2.477401 0.4641864 -5.337083 9.445382e-08 -3.38719 -1.567613

(b) The prior distribution p(σ2) ∝ (σ2)−1 corresponds to ν0 = σ2
0 = 0 so we have

p(σ2|d) = Inv-χ2(n− 1, s2)

where n = 177 and s2 is the standard deviation from the model. To obtain an
observation Y from the scaled Inv-χ2(n− 1, s2) distribution, first draw X from the
χ2
n−1 distribution and then let Y = (n− 1)s2/X. The 2.5 and 97.5 percentiles of the
χ2
n−1 distribution with n = 177 are found by:

> qchisq(c(0.025,0.975),177-1)

[1] 141.1571 214.6284

so a 95% posterior region for σ2 will be the inverse of these two values multiplied by
(n− 1)s2, so a confidence interval for σ is the square root of this:
> sqrt( (177-1) * summary(m1)$sigma^2 / qchisq(c(0.975,0.025),177-1) )

[1] 5.592317 6.895788

(c) The posterior distribution of (δ − d̄)/(sd/
√
n) is a t-distribution with n− 1 degrees of

freedom. So a 95% posterior interval for δ is:

d̄± t0.975(n− 1)× (sd/
√
n)

which is easily accomplished as:
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> n <- nrow( oxw )
> coef(m1) + c(-1,1) * qt(0.975,n-1) * ( summary(m1)$sigma / sqrt(n) )

[1] -3.393489 -1.561313

(d) To run this in BUGS via bugs() we must provide, a model specification, data, initial
values and the parameters to monitor:
> library( R2WinBUGS )
> library( BRugs )
> cat( "model
+ {
+ for( i in 1:I )
+ {
+ d[i] ~ dnorm( delta, tausq )
+ }
+ tausq <- pow( sigma, -2 )
+ sigma ~ dunif( 0, 1000 )
+ delta ~ dnorm( 0, 0.000001 )
+ }",
+ file="m1.bug" )
> m1.dat <- list( d=oxw$co-oxw$pulse, I=nrow(oxw) )
> m1.ini <- list( list( sigma=5, delta=0 ),
+ list( sigma=6, delta=1 ),
+ list( sigma=4, delta=-1 ) )
> m1.par <- c("sigma","delta")
> m1.res <- bugs( data = m1.dat,
+ inits = m1.ini,
+ param = m1.par,
+ model = "m1.bug",
+ n.chains = length(m1.ini),
+ n.iter = 30000,
+ n.burnin = 20000,
+ n.thin = 10,
+ program = "openbugs",
+ clearWD = TRUE )

Initializing chain 1: Initializing chain 2: Initializing chain 3:

In order to summarize and check the results we need to transform the resulting bugs
object into an mcmc.list object, so we must get the ad hoc function to do this:
> source("../r/mcmc.list.bugs.r")
> m1.res <- mcmc.list.bugs(m1.res)

(e) Once we have formed an mcmc.list object we can just use summary to get a 95%
posterior interval for the parameters:
> summary( m1.res )

Iterations = 1:1000
Thinning interval = 1
Number of chains = 3
Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
sigma 6.222 0.3337 0.006092 0.006595
delta 2.469 0.4689 0.008561 0.010171
deviance 1147.816 2.0412 0.037268 0.042564

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
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sigma 5.620 5.983 6.208 6.437 6.898
delta 1.559 2.147 2.466 2.780 3.406
deviance 1145.847 1146.387 1147.224 1148.563 1153.257

(f) We introduce limits δ ± 2σ as nodes agree.lo and agree.hi in the BUGS code:
> cat( "model
+ {
+ for( i in 1:I )
+ {
+ d[i] ~ dnorm( delta, tausq )
+ }
+ tausq <- pow( sigma, -2 )
+ sigma ~ dunif( 0, 1000 )
+ delta ~ dnorm( 0, 0.000001 )
+ agree.lo <- delta - 2*sigma
+ agree.hi <- delta + 2*sigma
+ }",
+ file="m2.bug" )
> m2.dat <- list( d=oxw$co-oxw$pulse, I=nrow(oxw) )
> m2.ini <- list( list( sigma=5, delta=0 ),
+ list( sigma=6, delta=1 ),
+ list( sigma=4, delta=-1 ) )
> m2.par <- c("sigma","delta","agree.lo","agree.hi")
> m2.res <- bugs( data = m2.dat,
+ inits = m2.ini,
+ param = m2.par,
+ model = "m2.bug",
+ n.chains = length(m2.ini),
+ n.iter = 30000,
+ n.burnin = 20000,
+ n.thin = 10,
+ program = "openbugs",
+ clearWD = TRUE )

Initializing chain 1: Initializing chain 2: Initializing chain 3:

> m2.res <- mcmc.list.bugs(m2.res)
> summary( m2.res )

Iterations = 1:1000
Thinning interval = 1
Number of chains = 3
Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
sigma 6.222 0.3337 0.006092 0.006595
delta 2.469 0.4689 0.008561 0.010171
agree.lo -9.975 0.8213 0.014994 0.016861
agree.hi 14.913 0.8098 0.014785 0.016268
deviance 1147.816 2.0412 0.037268 0.042564

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
sigma 5.620 5.983 6.208 6.437 6.898
delta 1.559 2.147 2.466 2.780 3.406
agree.lo -11.645 -10.509 -9.950 -9.401 -8.501
agree.hi 13.420 14.348 14.869 15.454 16.587
deviance 1145.847 1146.387 1147.224 1148.563 1153.257

One of the advantages of the BUGS machinery is that it is not necessary to re-run the



3.12 Measurement comparison in oximetry 99

code if you want the posterior of a simple function of the parameters; we can just use
the posterior sample and calculate a posterior of these parameter functions:
> M1 <- as.matrix( m1.res )
> a1.lo <- M1[,"delta"] - 2*M1[,"sigma"]
> a1.hi <- M1[,"delta"] + 2*M1[,"sigma"]
> M2 <- as.matrix( m2.res )
> plot( density( a1.hi ), type="l", xlim=c(-20,20), col=gray(0.5), lwd=3 )
> lines( density( a1.lo ), col=gray(0.5), lwd=3 )
> lines( density( M2[,"agree.hi"] ), lwd=2, col="red" )
> lines( density( M2[,"agree.lo"] ), lwd=2, col="red" )
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Figure 3.19: Comparison of posterior densities for the upper and lower LoA from calculation inside
BUGS (red) and from calculations on the posterior sample of δ and σ

Alternatively this point could have been demonstrated using the posterior sample from
model m2 directly:
> summary( M2[,"agree.lo"] - (M2[,"delta"]-2*M2[,"sigma"]) )

Min. 1st Qu. Median Mean 3rd Qu. Max.
-9.537e-07 -2.384e-07 0.000e+00 3.179e-09 2.384e-07 9.537e-07

For pure numerical fun it is instructive to see a table of the deviation between the two
measures:
> table( M2[,"agree.lo"] - (M2[,"delta"]-2*M2[,"sigma"]) )

-9.5367431640625e-07 -8.34465026855469e-07 -7.15255737304688e-07
25 7 155

-5.96046447753906e-07 -4.76837158203125e-07 -3.57627868652344e-07
21 336 34

-2.38418579101562e-07 -1.78813934326172e-07 -1.19209289550781e-07
514 1 54
0 1.19209289550781e-07 1.78813934326172e-07

688 46 1
2.38418579101562e-07 2.98023223876953e-07 3.57627868652344e-07

519 1 29
4.76837158203125e-07 5.36441802978516e-07 5.96046447753906e-07

366 1 15
7.15255737304688e-07 8.34465026855469e-07 9.5367431640625e-07

156 9 22
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(g) If we instead use an informative prior corresponding to 95% in an interval 3% on either
side of 0, i.e. N (0, 1.52), we change the BUGS code accordingly. Recall that BUGS
parametrizes by the precision, i.e. the inverse variance so we use 1/1.52 = 0.44444:
> cat( "model
+ {
+ for( i in 1:I )
+ {
+ d[i] ~ dnorm( delta, tausq )
+ }
+ tausq <- pow( sigma, -2 )
+ sigma ~ dunif( 0, 1000 )
+ delta ~ dnorm( 0, 0.4444444 )
+ }",
+ file="m3.bug" )
> m3.dat <- list( d=oxw$co-oxw$pulse, I=nrow(oxw) )
> m3.ini <- list( list( sigma=5, delta=0 ),
+ list( sigma=6, delta=1 ),
+ list( sigma=4, delta=-1 ) )
> m3.par <- c("sigma","delta")
> m3.res <- bugs( data = m3.dat,
+ inits = m3.ini,
+ param = m3.par,
+ model = "m3.bug",
+ n.chains = length(m3.ini),
+ n.iter = 30000,
+ n.burnin = 20000,
+ n.thin = 10,
+ program = "openbugs",
+ clearWD = TRUE )

Initializing chain 1: Initializing chain 2: Initializing chain 3:

> m3.res <- mcmc.list.bugs(m3.res)
> summary( m3.res )

Iterations = 1:1000
Thinning interval = 1
Number of chains = 3
Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
sigma 6.216 0.3308 0.006040 0.005879
delta 2.261 0.4525 0.008261 0.008997
deviance 1147.950 2.1819 0.039836 0.039362

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
sigma 5.623 5.986 6.201 6.430 6.897
delta 1.366 1.952 2.269 2.571 3.113
deviance 1145.857 1146.402 1147.281 1148.751 1154.189

We compare the posterior in this case with the previously obtained, by plotting the
posterior densities on top of each other. Also we include the prior density.
> M3 <- as.matrix( m3.res )
> plot( density( M3[,"delta"]), type="l", col=gray(0.2), lwd=3,
+ main="", bty="n", xlab="" )
> lines( density( M2[,"delta"] ), lwd=2, col="red" )
> xx <- seq(0,5,,200)
> lines( xx, dnorm(xx,mean=0,sd=1.5), lwd=2, col=gray(0.6) )
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Figure 3.20: Comparison of posterior densities using different priors for δ; informative is gray,
uninformative is red. (Part of) the informative prior used is shown in light gray.

The posterior is drawn toward 0 (the mean of the informative prior) and slightly
narrower (corresponding to the larger amount of information)

2. In order to account for the individual effect of child, we introduce a subject-specific effect µi
shared by all measurements on the ith infant:

yco,ir = µi + eco,ir

ypulse,ir = µi + δ + epulse,ir

where emij ∼ N(0, σ2
m), m = co, pulse. Note that the error terms for the two methods are

different as it would rather daft to assume that the measurement error were the same for
two different methods.

(a) The distribution of dir = yco,ir − ypulse,ir under this model is normal with mean δ and
standard deviation

√
σ2

co + σ2
co. So as far as the differences are concerned, the model is

the same as above, but with this extended model we can actually identify the separate
variances using the replicate measurements in the data.

(b) The expansion of the model to model the two types of measurement requires a bit or
rearrangement in the code. Note that the nodes mu.co[i] are defined as stochastic
nodes, whereas mu.pl[i] are deterministic as a sum of two stochastic nodes.
> cat( "model
+ {
+ for( i in 1:I )
+ {
+ mu.co[i] ~ dnorm( 0, 0.000001 )
+ mu.pl[i] <- mu.co[i] + delta
+ y.co[i] ~ dnorm( mu.co[i], tausq.co )
+ y.pl[i] ~ dnorm( mu.pl[i], tausq.pl )
+ }
+ tausq.co <- pow( sigma.co, -2 )
+ tausq.pl <- pow( sigma.pl, -2 )
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+ sigma.co ~ dunif( 0, 1000 )
+ sigma.pl ~ dunif( 0, 1000 )
+ delta ~ dnorm( 0, 0.000001 )
+ }",
+ file="m4.bug" )
> m4.dat <- list( y.co=oxw$co, y.pl=oxw$pulse, I=nrow(oxw) )
> m4.ini <- list( list( sigma.co=5, sigma.pl=5, mu.co=80, delta=0 ),
+ list( sigma.co=6, sigma.pl=6, mu.co=70, delta=1 ),
+ list( sigma.co=4, sigma.pl=4, mu.co=90, delta=-1 ) )
> m4.par <- c("sigma.pl","sigma.co","delta")
> m4.res <- bugs( data = m4.dat,
+ inits = m4.ini,
+ param = m4.par,
+ model = "m4.bug",
+ n.chains = length(m4.ini),
+ n.iter = 30000,
+ n.burnin = 20000,
+ n.thin = 10,
+ program = "openbugs",
+ clearWD = TRUE )

Initializing chain 1: Initializing chain 2: Initializing chain 3:

> m4.res <- mcmc.list.bugs(m4.res)
> summary( m4.res )

Iterations = 1:1000
Thinning interval = 1
Number of chains = 3
Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
sigma.pl 3.946 1.8560 0.033886 0.13814
sigma.co 4.056 1.8882 0.034474 0.14071
delta -2.466 0.4792 0.008749 0.01304
deviance 1841.499 260.3119 4.752623 21.36103

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
sigma.pl 0.5138 2.358 4.226 5.626 6.530
sigma.co 0.2767 2.579 4.545 5.683 6.519
delta -3.4005 -2.789 -2.465 -2.141 -1.540
deviance 1146.4685 1748.780 1936.606 2018.382 2080.125

(c) When we get to these slightly more complicated models it is prudent to make a
traceplot to ensure that the convergence i acceptable. In this case it does not really
seem to be the case; it appears that the two variance components are very closely
negatively correlated. Specifically the joint distribution is concentrated on a circle with
radius 6, i.e. the sum of the two variances is 36, and this is pretty well determined, but
the relative size of them is not.
> print( xyplot( m4.res[,c("delta","sigma.co","sigma.pl")],
+ aspect="fill", layout=c(3,1) ) )

> M4 <- as.matrix( m4.res, chains=TRUE )
> plot( M4[,"sigma.co"], M4[,"sigma.pl"], pch=16, col=rainbow(3)[M4[,"CHAIN"]] )

The simplest overview of the data can be made by the densityplot method which
gives an overview of the monitored parameters:
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Figure 3.21: Traces of the three chains for the three parameters of interest.

> print( densityplot( m4.res[,c("delta","sigma.co","sigma.pl")],
+ aspect="fill", layout=c(3,1) ) )

3. In order to account for the linking of the replicates we incorporate a random effect air with
variance ω2, modelling the individual variation between timepoints of measurement:

yco,ir = µi + air + eco,ir

ypulse,ir = µi + δ + air + epulse,ir

(a) We modify the BUGS code by including specification of this new variance component. In
order to do this we must supply the replicate number from the data. Note the nested
indexing needed in order to get the right random effect added in the right place.
> cat( "model
+ {
+ for( i in 1:I )
+ {
+ mu[i] ~ dunif( 0, 100 )
+ mu.co[i] <- mu[i] + a[i,repl[i]]
+ mu.pl[i] <- mu[i] + a[i,repl[i]] + delta
+ y.co[i] ~ dnorm( mu.co[i], tausq.co )
+ y.pl[i] ~ dnorm( mu.pl[i], tausq.pl )
+ for( r in 1:3 )
+ {
+ a[i,r] ~ dnorm( 0, iomegasq )
+ }
+ }
+ tausq.co <- pow( sigma.co, -2 )
+ tausq.pl <- pow( sigma.pl, -2 )
+ iomegasq <- pow( omega, -2 )
+ sigma.co ~ dunif( 0, 1000 )
+ sigma.pl ~ dunif( 0, 1000 )
+ omega ~ dunif( 0, 1000 )
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Figure 3.22: Joint posterior distribution of the two variance components.

+ delta ~ dnorm( 0, 0.000001 )
+ }",
+ file="m5.bug" )
> m5.dat <- list( y.co=oxw$co, y.pl=oxw$pulse, repl=oxw$repl, I=nrow(oxw) )
> m5.ini <- list( list( sigma.co=5, sigma.pl=5, omega=4, mu.co=80, delta=0 ),
+ list( sigma.co=6, sigma.pl=6, omega=4, mu.co=70, delta=1 ),
+ list( sigma.co=4, sigma.pl=4, omega=4, mu.co=90, delta=-1 ) )
> m5.par <- c("sigma.pl","sigma.co","omega","delta")
> m5.res <- bugs( data = m5.dat,
+ inits = m5.ini,
+ param = m5.par,
+ model ="m5.bug",
+ n.chains = length(m5.ini),
+ n.iter = 30000,
+ n.burnin = 20000,
+ n.thin = 10,
+ program = "openbugs",
+ clearWD = TRUE )

Initializing chain 1: Initializing chain 2: Initializing chain 3:

> m5.res <- mcmc.list.bugs(m5.res)
> summary( m5.res )

Iterations = 1:1000
Thinning interval = 1
Number of chains = 3
Sample size per chain = 1000
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Figure 3.23: Posterior densities for the overall difference between methods and the two residual
standard deviations.

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
sigma.pl 3.624 1.9355 0.035337 0.14136
sigma.co 4.334 1.8175 0.033182 0.13600
omega 2.320 1.8216 0.033257 0.12913
delta -2.470 0.4822 0.008804 0.01577
deviance 1832.773 253.0489 4.620020 19.40767

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
sigma.pl 0.30950 1.8966 3.730 5.447 6.463
sigma.co 0.46824 2.9227 4.933 5.843 6.605
omega 0.04368 0.6884 2.060 3.552 6.372
delta -3.44426 -2.7782 -2.470 -2.149 -1.531
deviance 1122.15136 1720.6963 1925.576 2014.933 2079.343

(b) Make a traceplot for the resulting mcmc.list. What is your conclusion — has the
chains converged?

(c) Make a pairwise scatter plot of the parameters in the model. Use as.matrix to get a
matrix of the posterior samples that you can stuff into pairs. What is your conclusion?

(d) The model can also be fitted by conventional methods, in this case we resort to lme.
For this we first stack the data and the run the model.
> oxl <- data.frame( y = c(oxw$co,oxw$pulse),
+ repl = factor( rep(oxw$repl,2) ) ,
+ id = factor( rep(oxw$item,2) ),
+ meth = factor( rep(c("co","pulse"),each=177) ) )
> library( nlme )
> m1 <- lme( y ~ meth + id,
+ random = list( id = pdIdent( ~ repl-1 ) ),
+ weights = varIdent( form = ~1 | meth ),
+ data = oxl,
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+ control = lmeControl(returnObject=TRUE) )
> m1

Linear mixed-effects model fit by REML
Data: oxl
Log-restricted-likelihood: -928.2544
Fixed: y ~ meth + id
(Intercept) methpulse id2 id3 id4 id5
76.55534468 -2.47740113 -7.89502947 4.65685242 -11.28966181 -1.47555983

id6 id7 id8 id9 id10 id11
2.13562002 9.39463233 3.73777991 -4.99939663 -18.78304002 12.66927107

id12 id13 id14 id15 id16 id17
-48.82331285 4.40123880 -3.66225214 6.23157059 0.48016527 13.40114335

id18 id19 id20 id21 id22 id23
1.48858186 -2.87219319 -1.26322060 5.64182935 -0.58513579 3.47155776

id24 id25 id26 id27 id28 id29
7.93409556 1.77884704 2.27263771 -9.33914552 -12.38561237 0.49639508

id30 id31 id32 id33 id34 id35
3.28705740 -29.97656035 5.86498335 5.75400972 8.86758775 1.12199462

id36 id37 id38 id39 id40 id41
3.49839611 3.56750833 6.61899307 1.73377785 -8.49118627 0.29487062

id42 id43 id44 id45 id46 id47
-5.97335257 -22.83052270 -17.79787217 1.82712400 4.46314117 2.91386369

id48 id49 id50 id51 id52 id53
-4.66545992 10.83433385 -25.14483090 -19.82772738 -0.35877402 -4.90744813

id54 id55 id56 id57 id58 id59
-0.05488344 11.70312835 9.29807840 12.48918523 13.11478478 14.47416217

id60 id61
7.63341276 -1.66927107

Random effects:
Formula: ~repl - 1 | id
Structure: Multiple of an Identity

repl1 repl2 repl3 Residual
StdDev: 2.92452 2.92452 2.92452 3.005045

Variance function:
Structure: Different standard deviations per stratum
Formula: ~1 | meth
Parameter estimates:

co pulse
1.000000 1.795366
Number of Observations: 354
Number of Groups: 61

The estimates from the REML-model are σ̂co = 3.01 σ̂pulse = 3.01× 1.795 = 5.40 and
ω = 2.92, where the posterior medians are for these are 4.25, 4.47 and 2.37.

4. The simplest way to allow for a difference that varies by the true measurement levels is to
introduce a linear relationship between the means:

yco,ir = µi + air + eco,ir

ypulse,ir = α+ β(µi + air) + epulse,ir

(a) We extend the BUGS code by an extra mean value parameter, β, and rename the other
to α, as this no longer represents a general difference between methods:
> cat( "model
+ {
+ for( i in 1:I )
+ {
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+ mu[i] ~ dunif( 0, 100 )
+ mu.co[i] <- mu[i] + a[i,repl[i]]
+ mu.pl[i] <- alpha + beta * ( mu[i] + a[i,repl[i]] )
+ y.co[i] ~ dnorm( mu.co[i], tausq.co )
+ y.pl[i] ~ dnorm( mu.pl[i], tausq.pl )
+ for( r in 1:3 )
+ {
+ a[i,r] ~ dnorm( 0, iomegasq )
+ }
+ }
+ tausq.co <- pow( sigma.co, -2 )
+ tausq.pl <- pow( sigma.pl, -2 )
+ iomegasq <- pow( omega, -2 )
+ sigma.co ~ dunif( 0, 1000 )
+ sigma.pl ~ dunif( 0, 1000 )
+ omega ~ dunif( 0, 1000 )
+ alpha ~ dnorm( 0, 0.000001 )
+ beta ~ dunif( 0, 2 )
+ }",
+ file="m6.bug" )
> m6.dat <- list( y.co=oxw$co, y.pl=oxw$pulse, repl=oxw$repl, I=nrow(oxw) )
> m6.ini <- list( list( sigma.co=5, sigma.pl=5, omega=4 ),
+ list( sigma.co=6, sigma.pl=6, omega=4 ),
+ list( sigma.co=4, sigma.pl=4, omega=4 ) )
> m6.par <- c("sigma.pl","sigma.co","omega","alpha","beta")
> m6.res <- bugs( data = m6.dat,
+ inits = m6.ini,
+ param = m6.par,
+ model ="m6.bug",
+ n.chains = length(m6.ini),
+ n.iter = 30000,
+ n.burnin = 20000,
+ n.thin = 10,
+ program = "openbugs",
+ clearWD = TRUE )

Initializing chain 1: Initializing chain 2: Initializing chain 3:

> m6.res <- mcmc.list.bugs(m6.res)
> summary( m6.res )

Iterations = 1:1000
Thinning interval = 1
Number of chains = 3
Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
sigma.pl 4.2273 1.76833 0.0322851 0.122350
sigma.co 3.8568 2.03363 0.0371289 0.140788
omega 2.2648 1.57811 0.0288122 0.120445
alpha 10.7608 2.55185 0.0465901 0.155817
beta 0.8258 0.03329 0.0006078 0.002038
deviance 1836.3723 294.21028 5.3715203 21.958631

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
sigma.pl 0.1194 3.3961 4.9617 5.493 6.1386
sigma.co 0.5817 2.2482 3.6062 5.606 7.3435
omega 0.1845 1.0604 1.9545 3.122 5.9657
alpha 5.7877 9.0894 10.8194 12.387 15.8701
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beta 0.7603 0.8042 0.8258 0.848 0.8901
deviance 914.3640 1762.0482 1942.0375 2027.590 2097.9178

(b) We might as well have chosen pulse-oximetry as the reference method and re-expressed
the model as

yco,ir = α? + β?(µi + air) + eco,ir

ypulse,ir = µi + air + epulse,ir

Swapping the reference method is a pretty straightforward change to the BUGS program:
> cat( "model
+ {
+ for( i in 1:I )
+ {
+ mu[i] ~ dunif( 0, 100 )
+ mu.co[i] <- alpha + beta * ( mu[i] + a[i,repl[i]] )
+ mu.pl[i] <- mu[i] + a[i,repl[i]]
+ y.co[i] ~ dnorm( mu.co[i], tausq.co )
+ y.pl[i] ~ dnorm( mu.pl[i], tausq.pl )
+ for( r in 1:3 )
+ {
+ a[i,r] ~ dnorm( 0, iomegasq )
+ }
+ }
+ tausq.co <- pow( sigma.co, -2 )
+ tausq.pl <- pow( sigma.pl, -2 )
+ iomegasq <- pow( omega, -2 )
+ sigma.co ~ dunif( 0, 1000 )
+ sigma.pl ~ dunif( 0, 1000 )
+ omega ~ dunif( 0, 1000 )
+ alpha ~ dnorm( 0, 0.000001 )
+ beta ~ dunif( 0, 2 )
+ }",
+ file="m7.bug" )
> m7.dat <- list( y.co=oxw$co, y.pl=oxw$pulse, repl=oxw$repl, I=nrow(oxw) )
> m7.ini <- list( list( sigma.co=5, sigma.pl=5, omega=4 ),
+ list( sigma.co=6, sigma.pl=6, omega=4 ),
+ list( sigma.co=4, sigma.pl=4, omega=4 ) )
> m7.par <- c("sigma.pl","sigma.co","omega","alpha","beta")
> m7.res <- bugs( data = m7.dat,
+ inits = m7.ini,
+ param = m7.par,
+ model ="m7.bug",
+ n.chains = length(m7.ini),
+ n.iter = 30000,
+ n.burnin = 20000,
+ n.thin = 10,
+ program = "openbugs",
+ clearWD = TRUE )

Initializing chain 1: Initializing chain 2: Initializing chain 3:

> m7.res <- mcmc.list.bugs(m7.res)
> summary( m7.res )

Iterations = 1:1000
Thinning interval = 1
Number of chains = 3
Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:
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Mean SD Naive SE Time-series SE
sigma.pl 4.4640 2.0034 0.0365776 0.141415
sigma.co 3.7948 1.9112 0.0348935 0.134226
omega 2.7086 1.9488 0.0355809 0.156487
alpha 8.2296 2.8933 0.0528234 0.204789
beta 0.9212 0.0391 0.0007139 0.002791
deviance 1846.5101 303.3006 5.5374859 22.766267

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
sigma.pl 0.38172 2.8004 4.9923 6.166 7.1982
sigma.co 0.09975 2.1531 4.0669 5.554 6.4671
omega 0.18543 1.0407 2.3725 4.031 7.1426
alpha 2.53534 6.1843 8.4274 10.184 13.7898
beta 0.84469 0.8947 0.9188 0.949 0.9978
deviance 817.37809 1781.8370 1948.0836 2033.226 2106.2995

(c) If α+ βµ = ξ then we have µ = −α/β + ξ/β, hence the relationship between the
parameters of the means in the two formulations are:

β? = 1/β and α? = α/β

(d) The summary function for mcmc.list objects allows you to extract all the relevant
quantities and check whether the relationship is fulfilled for the either the mean or the
median:
> # Mean
> ( ab6 <- summary( m6.res )$statistics[c("alpha","beta"),"Mean"] )

alpha beta
10.7607645 0.8258274

> ( ab7 <- summary( m7.res )$statistics[c("alpha","beta"),"Mean"] )

alpha beta
8.229590 0.921227

> abt <- c( -ab6[1]/ab6[2], 1/ab6[2] )
> round( cbind( ab6, ab7, abt ), 3 )

ab6 ab7 abt
alpha 10.761 8.230 -13.030
beta 0.826 0.921 1.211

> # Median
> ( ab6 <- summary( m6.res )$quantiles[c("alpha","beta"),"50%"] )

alpha beta
10.8194337 0.8258169

> ( ab7 <- summary( m7.res )$quantiles[c("alpha","beta"),"50%"] )

alpha beta
8.4274416 0.9187737

> abt <- c( -ab6[1]/ab6[2], 1/ab6[2] )
> round( cbind( ab6, ab7, abt ), 3 )

ab6 ab7 abt
alpha 10.819 8.427 -13.101
beta 0.826 0.919 1.211

Apparently the two pieces of BUGS code do not refer to the same model. Despite the
fact that the model specifications look deceptively identical they do not give the same
relationship between the models. In fact the two models are (bar the variance
components) pretty close to the standard regressions of one method on the other:



110 PDAwBuR: Solutions to Exercises

> round(ci.lin(lm(pulse~co,data=oxw))[,c(1,5,6)],3)

Estimate 2.5% 97.5%
(Intercept) 11.010 5.681 16.339
co 0.822 0.752 0.891

> round(summary(m6.res)$quantiles[4:5,c(3,1,5)],3)

50% 2.5% 97.5%
alpha 10.819 5.788 15.87
beta 0.826 0.760 0.89

> round(ci.lin(lm(co~pulse,data=oxw))[,c(1,5,6)],3)

Estimate 2.5% 97.5%
(Intercept) 8.503 2.75 14.256
pulse 0.918 0.84 0.995

> round(summary(m7.res)$quantiles[4:5,c(3,1,5)],3)

50% 2.5% 97.5%
alpha 8.427 2.535 13.790
beta 0.919 0.845 0.998

5. In order to get the model right we reformulate it so that it is symmetric in the two methods:

yco,ir = αco + βco(µi + air) + eco,ir

ypulse,ir = αpulse + βpulse(µi + air) + epulse,ir

(a) The relationship between the means of the two methods is found by setting all the
variance components to 0 and then isolating µi from the first equation and inserting in
the second:

µi = (yco − αco)/βco

⇓
ypulse = αpulse + βpulse(yco − αco)/βco

=
(
αpulse − αco

βpulse

βco

)
+
βpulse

βco
yco

So the relevant parameters in terms of those in the model are

αpulse|co = αpulse − αco
βpulse

βco
βpulse|co =

βpulse

βco

(b)

(c) The modification is quite straightforward, however it should be noted that even if the
model is over-parametrized, you can still get BUGS to run the chains, but there is no
guarantee for convergence. You might for example see the µis wander off to infinity and
the βs going toward 0. So precisely in this case it is essential to have a finite support
for the prior of the µs as this ensures a finite support for the posterior of the µs too.
> cat( "model
+ {
+ for( i in 1:I )
+ {
+ mu[i] ~ dunif( 0, 100 )
+ mu.co[i] <- alpha.co + beta.co * ( mu[i] + a[i,repl[i]] )
+ mu.pl[i] <- alpha.pl + beta.pl * ( mu[i] + a[i,repl[i]] )
+ y.co[i] ~ dnorm( mu.co[i], tausq.co )
+ y.pl[i] ~ dnorm( mu.pl[i], tausq.pl )
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+ for( r in 1:3 )
+ {
+ a[i,r] ~ dnorm( 0, iomegasq )
+ }
+ }
+ tausq.co <- pow( sigma.co, -2 )
+ tausq.pl <- pow( sigma.pl, -2 )
+ iomegasq <- pow( omega, -2 )
+ sigma.co ~ dunif( 0, 1000 )
+ sigma.pl ~ dunif( 0, 1000 )
+ omega ~ dunif( 0, 1000 )
+ alpha.co ~ dnorm( 0, 0.000001 )
+ alpha.pl ~ dnorm( 0, 0.000001 )
+ beta.co ~ dunif( 0, 2 )
+ beta.pl ~ dunif( 0, 2 )
+ }",
+ file="m8.bug" )
> m8.dat <- list( y.co=oxw$co, y.pl=oxw$pulse, repl=oxw$repl, I=nrow(oxw) )
> m8.ini <- list( list( sigma.co=5, sigma.pl=5, omega=4 ),
+ list( sigma.co=6, sigma.pl=6, omega=4 ),
+ list( sigma.co=4, sigma.pl=4, omega=4 ) )
> m8.par <- c("sigma.pl","sigma.co","omega",
+ "alpha.pl","alpha.co",
+ "beta.pl", "beta.co")
> m8.res <- bugs( data = m8.dat,
+ inits = m8.ini,
+ param = m8.par,
+ model ="m8.bug",
+ n.chains = length(m8.ini),
+ n.iter = 30000,
+ n.burnin = 20000,
+ n.thin = 10,
+ program = "openbugs",
+ clearWD = TRUE )

Initializing chain 1: Initializing chain 2: Initializing chain 3:

> m8.res <- mcmc.list.bugs(m8.res)
> summary( m8.res )

Iterations = 1:1000
Thinning interval = 1
Number of chains = 3
Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
sigma.pl 3.5941 1.94711 0.0355493 0.1455
sigma.co 4.1650 1.92657 0.0351742 0.1461
omega 124.5145 101.12807 1.8463375 NA
alpha.pl 67.2601 2.86772 0.0523572 NA
alpha.co 69.4529 3.05049 0.0556941 NA
beta.pl 0.1185 0.05292 0.0009662 NA
beta.co 0.1241 0.05695 0.0010397 NA
deviance 1748.3583 383.18285 6.9959297 27.7903

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
sigma.pl 0.11933 1.921e+00 4.0402 5.3225 6.1197
sigma.co 0.16206 2.706e+00 4.6947 5.8099 6.5665
omega 40.85126 6.657e+01 86.0669 136.2487 428.9874
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alpha.pl 61.20678 6.559e+01 66.9888 69.4466 72.2439
alpha.co 63.06398 6.775e+01 69.3601 71.8053 74.6479
beta.pl 0.02601 7.883e-02 0.1225 0.1538 0.2288
beta.co 0.02703 8.299e-02 0.1262 0.1623 0.2416
deviance 711.36764 1.645e+03 1906.1353 2016.1856 2078.3258

(d) Once we have run the chains we can inspect the traces using xyplot; the subsetting is
to get the displays in the right order — panels are filled from bottom left going left
then up.
> print(xyplot( m8.res[,c(7,3,6,2,5,1,4)], layout=c(2,4), aspect="fill" ))
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Figure 3.24: Traces of parameters in the over-parametrized model.

(e) The relevant parameters are the intercepts and the slopes in the linear relation between
the methods. Therefore we compute these 4. Currently this is a bit of a hazzle; first
convert the mcmc.list to a dataframe, do the camputations and turn it back into a
mcmc.list.
> # Create a dataframe, expand it and coerce back to mcmc.list object:
> m8 <- as.data.frame( as.matrix( m8.res, ch=T ) )
> m8$beta.co.pl <- m8$beta.co / m8$beta.pl
> m8$alpha.co.pl <- m8$alpha.co - m8$alpha.pl * m8$beta.co.pl
> m8$beta.pl.co <- m8$beta.pl / m8$beta.co
> m8$alpha.pl.co <- m8$alpha.pl - m8$alpha.co * m8$beta.pl.co
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> m8x.res <- lapply( split( as.data.frame(m8[,-1]), m8[,"CHAIN"] ),
+ function(obj) { zz <- as.matrix(obj)
+ attr(zz,"mcpar") <- attr(m8.res[[1]],"mcpar")
+ class(zz) <- "mcmc"
+ return(zz) } )
> class( m8x.res ) <- "mcmc.list"
> str( m8x.res )

List of 3
$ 1: mcmc [1:1000, 1:12] 1.126 0.997 0.592 0.469 0.388 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:1000] "1" "2" "3" "4" ...
.. ..$ : chr [1:12] "sigma.pl" "sigma.co" "omega" "alpha.pl" ...
..- attr(*, "mcpar")= num [1:3] 1 1000 1
$ 2: mcmc [1:1000, 1:12] 5.00 4.95 5.34 5.91 5.59 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:1000] "1001" "1002" "1003" "1004" ...
.. ..$ : chr [1:12] "sigma.pl" "sigma.co" "omega" "alpha.pl" ...
..- attr(*, "mcpar")= num [1:3] 1 1000 1
$ 3: mcmc [1:1000, 1:12] 4.84 3.86 4.34 4.31 3.22 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:1000] "2001" "2002" "2003" "2004" ...
.. ..$ : chr [1:12] "sigma.pl" "sigma.co" "omega" "alpha.pl" ...
..- attr(*, "mcpar")= num [1:3] 1 1000 1
- attr(*, "class")= chr "mcmc.list"

> summary( m8x.res )

Iterations = 1:1000
Thinning interval = 1
Number of chains = 3
Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
sigma.pl 3.5941 1.94711 0.0355493 0.145531
sigma.co 4.1650 1.92657 0.0351742 0.146069
omega 124.5145 101.12807 1.8463375 NA
alpha.pl 67.2601 2.86772 0.0523572 NA
alpha.co 69.4529 3.05049 0.0556941 NA
beta.pl 0.1185 0.05292 0.0009662 NA
beta.co 0.1241 0.05695 0.0010397 NA
deviance 1748.3583 383.18285 6.9959297 27.790316
beta.co.pl 1.0536 0.11802 0.0021547 0.007931
alpha.co.pl -1.4468 8.65221 0.1579671 0.578963
beta.pl.co 0.9610 0.10639 0.0019423 0.007175
alpha.pl.co 0.4763 8.06735 0.1472889 0.541771

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
sigma.pl 0.11933 1.92097 4.0402 5.3225 6.1197
sigma.co 0.16206 2.70602 4.6947 5.8099 6.5665
omega 40.85126 66.57066 86.0669 136.2487 428.9874
alpha.pl 61.20678 65.58865 66.9888 69.4466 72.2439
alpha.co 63.06398 67.75114 69.3601 71.8053 74.6479
beta.pl 0.02601 0.07883 0.1225 0.1538 0.2288
beta.co 0.02703 0.08299 0.1262 0.1623 0.2416
deviance 711.36764 1644.91290 1906.1353 2016.1856 2078.3258
beta.co.pl 0.87412 0.95078 1.0391 1.1545 1.2725
alpha.co.pl -17.35446 -8.74742 -0.3999 6.0358 11.8590
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beta.pl.co 0.78583 0.86620 0.9623 1.0518 1.1440
alpha.pl.co -13.54335 -6.34512 0.3855 7.6182 13.6516

> round( ci.lin( lm( co ~ pulse, data=oxw ) ), 3 )

Estimate StdErr z P 2.5% 97.5%
(Intercept) 8.503 2.935 2.897 0.004 2.75 14.256
pulse 0.918 0.040 23.165 0.000 0.84 0.995

> round( ci.lin( lm( pulse ~ co, data=oxw ) ), 3 )

Estimate StdErr z P 2.5% 97.5%
(Intercept) 11.010 2.719 4.049 0 5.681 16.339
co 0.822 0.035 23.165 0 0.752 0.891

We see that the slope for converting from one method to another lies between the two
regression slopes we get from ordinary linear regressions.

(f) We can check whether we have reasonable mixing of the chains for the parameters of
interest by xyplot and density plot — we are not impressed!
> wh <- c( grep( "sigma", varnames( m8x.res ) ),
+ grep( "omega", varnames( m8x.res ) ),
+ grep( "pl.co", varnames( m8x.res ) ) )
> print(xyplot( m8x.res[,wh], layout=c(3,2), aspect="fill", lwd=2 ))

> print( densityplot(m8x.res[,wh],layout=c(3,2),lwd=2,aspect="fill") )

(g) Based on the posterior medians we would say that the relations ship between the
methods were something like:

yco = −0.50 + 1.04ypulse

which is shown in the figure
> with( oxw, plot( co ~ pulse, pch=16, xlim=c(20,100), ylim=c(20,100) ) )
> abline(0,1)
> abline( lm( co~pulse, data=oxw), col="red", lwd=2 )
> cf <- coef( lm( pulse ~ co, data=oxw) )
> abline( -cf[1]/cf[2], 1/cf[2], col="red", lwd=2 )
> qnt <- summary( m8x.res )$quantiles
> qnt <- qnt[grep("co.pl",rownames(qnt)),"50%"]
> abline( qnt[2], qnt[1], col="blue", lwd=2 )
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Figure 3.25: Traces and densities of transformed parameters .
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Figure 3.26: Individual datapoints and traditional regression lines together with the line based on
the posterior medians.


	Introduction to computing and practicals
	Software
	Overview
	What to get
	How to install and fine-tune
	Tinn-R and R


	Course material
	Simulating data in R
	Distributions in R
	Using the interface to BUGS
	Using BUGS via bugs()
	Results


	Exercises
	Bayesian inference in the binomial distribution
	Simple linear regression with BUGS
	Examples of the Gibbs sampler and Metropolis Hastings algorithm
	Estimating a rate from Poisson data
	Estimating the speed of light
	Modelling the rate of airline fatalities 1976 to 2001
	Assessing convergence using the Gelman-Rubin diagnostic --- Using coda in R
	Meta-analysis of clinical trial data
	Linear mixed models of fetal growth
	Classical twin model in BUGS
	Using the DIC in model comparison
	Measurement comparison in oximetry

	Solutions
	Bayesian inference in the binomial distribution
	Simple linear regression with BUGS
	Examples of the Gibbs sampler and Metropolis Hastings algorithm
	Estimating a rate from Poisson data
	Estimating the speed of light
	Modelling the rate of airline fatalities 1976 to 2001
	Assessing convergence using the Gelman-Rubin diagnostic --- Using coda in R
	Meta-analysis of clinical trial data
	Linear mixed models of fetal growth
	Classical twin model in BUGS
	Risk factors for mammographic density using twin data

	Using the DIC in model comparison
	Measurement comparison in oximetry


