
The identifiable trend in APC models
is not unique

SDCC
http://bendixcarstensen.com/APC

January 2019
Version 4

Compiled Wednesday 24th July, 2019, 16:37
from: /home/bendix/teach/APC/art/apcdrift.tex

Bendix Carstensen Steno Diabetes Center Copenhagen, Gentofte, Denmark
& Department of Biostatistics, University of Copenhagen

bcar0029@regionh.dk b@bxc.dk

http://BendixCarstensen.com

http://bendixcarstensen.com/APC
mailto:bcar0029@regionh.dk
mailto:b@bxc.dk
http://BendixCarstensen.com


Contents

1 Abstract 1

2 Introduction 1
2.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

3 A general APC model 1

4 Identifiable trend 2

5 Model invariance and data format 2
5.1 The second order differences . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

6 Practical implications for APC modeling 4
6.1 A worked example: Lung cancer in Denmark . . . . . . . . . . . . . . . . . . 4

Different parametrizations of a model . . . . . . . . . . . . . . . . . . . . . . 5
Uninformative data expansion . . . . . . . . . . . . . . . . . . . . . . . . . . 6

7 Discussion 7

8 Conclusion 8

9 Acknowledgement 8

References 8

A1 Examples 10
A1.1 Lung cancer in Denmark: factor model . . . . . . . . . . . . . . . . . . . . . 10
A1.2 Testis cancer in Denmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

A2 Information from the log-likelihood 14

A3 Orthogonality and inner product 15
A3.1 Table 1 of Holford’s paper[1] . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

ii



Abstract 1

1 Abstract

Extraction of the secular trend from age-period-cohort models has routinely been done by
Holford’s method [1], mostly with reference to the trend as being identifiable. This means
identifiable in a particular parametrization derived by orthogonal projection of columns of
the model matrix on the linear age, period and cohort. Orthogonality however requires an
inner product, and in the age-period-cohort setting the usual inner product assigning equal
weight to all observational units is hardly appropriate because records contain different
amounts of information.

This commentary details the problems and devises a family of inner products with
desirable invariance properties that should be used for definition of orthogonality when
devising the identifiable trend. Examples using R are provided.

Keywords: Age-period-cohort model, identifiable trend, inner product, orthogonality

2 Introduction

Both in the literature on age-period-cohort (APC) methodology as well as in publications
using the methodology there are frequent references to the “identifiable trend”, almost
invariably with reference to Holford’s 1983 paper [1]. This note explains why the trend is
only identifiable in a very narrow sense and proposes another way of identifying a trend,
different from the one suggested by Holford (but still identifiable) and which meets
desirable invariance criteria that Holford’s proposal does not.

Parts of this was already pointed out by me more than 10 years ago [2], but the precise
details of inner products of relevance and their invariance properties were not hammered
out then. Now they are.

Unlike the vast majority of the literature on APC-modeling the results of that paper
applies to any set of subsets of observation of events and risk time in a Lexis diagram,
regardless of shape and size. The only requirement is that mean age and date of follow-up
in each subset is defined.

2.1 Terminology

I shall use the term “drift” for the parameter estimated in the age-drift model as coined by
Clayton & Schifflers [3, 4], and the term “trend” for the parameter extracted from an
age-period-cohort model that supposedly represents some overall trend in rates, while I
shall reserve the term “slope” for the slope of a specific linear relationship. Finally I
consider two models identical if they produce the same fitted values — a given model may
of course be parametrized in different ways.

3 A general APC model

The setting for APC models is commonly a tabulation of events and risk-time (population
exposure) by age and date of follow-up; or more generally a set of subsets of a Lexis
diagram with events and risk-time [5].
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Suppose the mean age and period of follow-up for each observational record (Lexis
subset; table entry) are a and p, respectively. Then a general model that encompasses both
the traditional factor-based models as well as models based on parametric functions of a
and p can be written:

log
(
λ(a, p)

)
= f(a) + g(p) + h(p− a) (1)

This can be taken either as a model specification with three (usually smooth) functions of
the quantitative variables a and p, but also as a rendering of a classical factor based model
by defining each of the three functions to have a separate value for each separate value of
the function argument. The latter is normally using the notation f(a) = fa etc.

Note that the model is over-parametrized if the functions f , g and h contain the linear
effects of a, p and p− a respectively — which will normally be the case.

4 Identifiable trend

The model (1) can be reparametrized by extracting a slope from each of the terms:

log
(
λ(a, p)

)
= f̃(a) + g̃(p) + h̃(p− a) + γa+ πp+ δ(p− a)

Even for fixed f̃ , g̃ and h̃, the parameters γ, π and δ are not uniquely determined; for any
κ we can add 0 to the equation in the form of 0 = (p− a− c)κ:

log
(
λ(a.p)

)
= f̃(a) + g̃(p) + h̃(p− a) + (γ − κ)a+ (π + κ)p+ (δ − κ)(p− a)

Thus we see that the sum of the coefficients to p (period) and p− a (cohort) is invariant
under adding the κ terms. The quantity π + δ is what is normally referred to as the
identifiable trend, because it is invariant under change of κ, but of course it depends on the
choice of g̃ and h̃.

The size of π + δ depends on the choice of g̃ and h̃, that is on what we mean by the term
“extracting a slope”. Holford [1] devised a particular reparametrization by setting up a
specific design matrix for f̃ , g̃ and h̃.1.

This is where the indeterminacy of the identifiable trend is hidden — the exercise
proposed by Holford is a projection of the design matrix columns for period, respectively
cohort on the orthogonal complement of the subspaces spanned by the intercept and the
linear period (PL) respectively cohort (CL) (Holford’s notation).

However, the inner product used to define orthogonality (see section A3) in Holford’s
paper is without mention taken to be the standard one, putting equal weight on all
observed records. But since each observed record represents a table entry, records do not
contain the same amount of information, so there is no obvious argument for the standard
inner product here.

5 Model invariance and data format

Suppose we are using a Poisson likelihood to model rate data, where each record
corresponds to a table entry of events (D) and risk-time (Y ). Now take any (set of)

1Incidentally, in the table 1 of Holford’s paper there is a typo, as the 2nd column of the CL matrix is not
orthogonal to the linear cohort term — the 8th element should be −2 not 2. See the last section A3.1 for
details.
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record(s) with response (D, Y ) and replace (each) with, say, two records with identical
values of all covariates (in this case a, p and all codings of age, period and cohort effects),
but where the D and the Y are split so that the sum of the Ds and the Y s across the two
records equals the original (D, Y ). Then the model fit will be exactly the same, and the
parameters in the fitted model will be the same as when using the original data.

This is because the log-likelihood contributions from the two records sum to the
likelihood contribution from the single original one — the log-likelihood is D log(λ)− λY
which is additive in D and Y . Specifically, if D = d1 + d2 and Y = y1 + y2, replicating the
record’s covariates (age, period and cohort) but using d1 respectively d2 as events and y1
respectively y1 as risk time in the two records, the contribution to the log-likelihood would
be (identical covariates implies identical rates, λ):

d1 log(λ)− λy1 + d2 log(λ)− λy2 = (d1 + d2) log(λ)− λ(y1 + y2) = D log(λ)− λY

This is a feature of the Poisson likelihood and as such unrelated to APC modeling.
If the parametrization in an APC model were set up as proposed by Holford, the

period/cohort columns for the non-linear effects would not be orthogonal to the linear
effect of period/cohort after subdividing a subset of the observational record(s) as above.
So the trend extracted by using the standard inner product is not only a function of the
model and the observed data, but also of the particular data lay-out.

But if the inner product used to define orthogonality were induced by a diagonal matrix
where the entries were proportional to either D or Y , we would actually have orthogonality
both for the original data and for the data where records were split (and the model fit
would still be the same). This is because the contribution to the inner product between
any two vectors from the records with split data would be the same as the contribution
from the aggregate record.

Extracting the trend would thus only be a function of the observed data and the model,
not of the particular data layout.

The invariance under subdivision of the tabular entries is of relevance because the
records actually are aggregate observations; in the extreme we may have data where each
record were the follow-up of a single persons in a subset of the Lexis diagram, with age and
period coded as in the corresponding aggregate record. And certainly we would like not
only the model but also any parameter extracted to be the same regardless of the
aggregation level of the data (for a given coding of the covariates).

In fact this would also be the case for any inner product induced by a diagonal matrix
with entries wi = qdDi + qyYi, qd ≥ 0, qy ≥ 0. Moreover, only inner products of this form
has this property.

Since the projection properties of an inner product induced by a diagonal matrix does
not change by multiplication of all elements of the diagonal by a positive constant, all the
inner products of interest are induced by diagonal matrices with entries of the form
wi = Di + qYi, where q = 0 corresponds to using Di as weights and q →∞ corresponds to
using Yi as weights. These inner products would be natural choices for definition of
orthogonality in extraction of trends in APC modeling of rates.

It should be noted that in cases with sparse event data, some records in data may
contain 0 events (D = 0), causing the inner product based on D to ignore these records.
This would be a reason to always include Y as part of the inner product weights.
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5.1 The second order differences

Using factor-coded effects of age, period and cohort, Clayton & Schifflers [4] suggested to
use the 2nd order differences of the parameters as these are invariant under
reparametrization of the model. These can be obtained using the contr.2nd contrasts in
the Epi package. Which incidentally is just a coding of the factor levels by a linear spline
with knots at all points. This is only sensible if age and period classes are all of the same
length.

One might think that the subspace spanned by these columns is the subspace orthogonal
to the linear trend using an inner product where weights are chosen so that the sum of the
weights is the same for all levels of the variable. This is however not the case; the 2nd order
differences of the period/cohort effects will be the same regardless of the way we extract
the linear trend. So the 2nd order differences is not related to the way the linear trend is
extracted; they are always the same — provided of course the model is the factor model.

The trend extraction by projections leaves estimates of the non-linear part of period /
cohort, on the (log-)RR scale; the second order differences are not on this scale, they are
curvature parameters.

6 Practical implications for APC modeling

It is important to recognize that regardless of how the parametrization is constructed, the
model fit is the same. So the discussion above only relates to the definition (i.e. extraction)
of the trend as a particular parameter of the model.

Moreover, even if we restrict attention to inner products that have the invariance
property outlined above, the choice is not unique.

In exploring the effect of different inner products over the range of the q defined above,
we have to decide when q is large enough to effectively be ∞. We could check the size of
the extracted trend for q = (0,∞), and using K = mean(Di)/mean(Yi) (median or some
other summary could be used as well) using values q = K × (0.2, 0.5, 1, 2, 5, 10). Note the
necessity of a relative scaling of D and Y , since D is an absolute count and Y is scaled
measurement (risk-time).

A more modest approach would be to just report the extracted trend using Y and D
respectively; both of the latter options are implemented in the apc.fit function in the Epi

package for R.

6.1 A worked example: Lung cancer in Denmark

The Epi package for R contains functions to fit APC models and extract trends. The
package also contains a number of example data sets. Here we load the lung cancer data,
which has male cases and risk time in 5-year Lexis triangles [2] in ages 40–90 for the period
1943–1998, incl. Hence the age and period are coded as the midpoints in the Lexis
triangles.

> library( Epi )
> data( lungDK )
> lu <- lungDK[,c("Ax","Px","D","Y")]
> names( lu )[1:2] <- c("A","P")
> lu$Y <- lu$Y/10^5
> head( lu, 4 )
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A P D Y
1 43.33333 1944.667 52 3.362338
2 41.66667 1946.333 28 3.578127
3 43.33333 1949.667 51 3.637837
4 41.66667 1951.333 30 3.909858

Different parametrizations of a model

We analyze data by APC models, using the default model with natural splines with 5 knots
for each of the three effects, but with three different parametrizations — we see that the
model fit is the same:

> apc.1 <- apc.fit( lu, parm="AdPC", dr.extr="N", ref.p=1980, pr=F )
> apc.d <- apc.fit( lu, parm="AdPC", dr.extr="D", ref.p=1980, pr=F )
> apc.y <- apc.fit( lu, parm="AdPC", dr.extr="Y", ref.p=1980, pr=F )
> c( apc.1$Model$deviance,
+ apc.d$Model$deviance,
+ apc.y$Model$deviance )

[1] 549.3752 549.3752 549.3752

> round( cbind( ci.exp(apc.1$Model),
+ ci.exp(apc.d$Model),
+ ci.exp(apc.y$Model) ), 3 )

exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5%
MA 101.293 99.206 103.425 103.481 101.415 105.588 89.855 87.918 91.835
MA1 2.818 2.728 2.910 3.172 3.072 3.274 3.273 3.172 3.378
MA2 2.907 2.834 2.981 3.368 3.288 3.451 3.503 3.420 3.589
MA3 7.783 7.532 8.043 10.067 9.764 10.379 10.782 10.468 11.106
MA4 1.952 1.909 1.997 2.352 2.306 2.400 2.472 2.419 2.527
I(P - p0) 1.032 1.031 1.033 1.020 1.019 1.020 1.020 1.019 1.021
MPr1 1.329 1.289 1.370 1.329 1.289 1.370 1.329 1.289 1.370
MPr2 1.252 1.210 1.296 1.252 1.210 1.296 1.252 1.210 1.296
MPr3 1.463 1.399 1.530 1.463 1.399 1.530 1.463 1.399 1.530
MCr1 1.234 1.197 1.272 1.234 1.197 1.272 1.234 1.197 1.272
MCr2 1.297 1.269 1.325 1.297 1.269 1.325 1.297 1.269 1.325
MCr3 2.085 2.023 2.149 2.085 2.023 2.149 2.085 2.023 2.149

We extracted the trend using different inner products to define orthogonality, and now
show the trend parameters as annual percent changes (incidentally, these are in the Drift

component of the apc object) — here we show the average annual trend:

> dr.1 <- apc.1$Drift
> dr.y <- apc.y$Drift
> dr.d <- apc.d$Drift
> round( org <- (rbind( dr.1[1,,drop=F],
+ dr.d[1,,drop=F],
+ dr.y )-1)*100, 2 )

exp(Est.) 2.5% 97.5%
APC (1-weights) 3.23 3.15 3.30
APC (D-weights) 1.96 1.90 2.02
APC (Y-weights) 2.03 1.95 2.11
A-d 2.35 2.30 2.40

We see that the standard inner product produces a substantially different trend estimate
from the ones based on D or Y , and that they are on either side of the estimate of the drift
from the age-drift model [3, 4].

A plot of the estimated effects (figure 1) shows the three different sets of effects, that
however all multiply to the same fitted rates:
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> par(mar=c(3,4,0.1,4),las=1,mgp=c(3,1,0)/1.6,lend="butt")
> lt <- c("solid","solid","11")
> plot( apc.d, "Male lung cancer incidence rate per 100,000 PY",
+ col="red" , lty=lt )

cp.offset RR.fac
1765 100

> lines( apc.1, col="black", lty=lt )
> lines( apc.y, col="blue" , lty=lt )
> text( 135, 400*c(0.85,1,0.85^2),
+ paste( c("D: ","1: ","Y: "),
+ formatC((c(dr.d[1,1],dr.1[1,1],dr.y[1,1])-1)*100,format="f",dig=2),
+ " %/year", sep=""),
+ col=c("red","black","blue"), adj=1 )

Uninformative data expansion

Now we duplicate some of the records so we have duplicate occurrences of some
combinations of age and period (and hence cohort), but we redistribute events and risk
time between the duplicate records:

> set.seed( 1952 )
> wh <- (1:nrow(lu))[lu$P>1980]
> ld <- lu[wh,] # records for the latest periods
> wd <- runif( nrow(ld) ) # random fractions for events
> wy <- runif( nrow(ld) ) # and person-years
> l1 <- transform( ld, D=round(wd*D), Y=wy*Y ) # data frame with these fractions of D and Y
> l2 <- merge( l1, ld, by=c("A","P") ) # merge with the original data
> # merge renames non-by variables with .x and .y suffixes
> l2 <- transform( l2, D=D.y-D.x, Y=Y.y-Y.x )[,c("A","P","D","Y")] # complemantary fraction
> # check that D and Y is the same for all combinations of A and P:
> range( xtabs( cbind( D,Y ) ~ A + P, data = ld ) -
+ xtabs( cbind( D,Y ) ~ A + P, data = l1 ) -
+ xtabs( cbind( D,Y ) ~ A + P, data = l2 ) )

[1] 0 0

> # so l1 + l2 together have the same events and PY as do ld
> lx <- rbind( lu[-wh,], l1, l2 ) # data frame with uninformatively duplicated records

Now we can check that we get the same fitted parameters in the sense that the likelihood
ratio tests are the same for the two different lay-outs of data, and that the drift from the
Age-drift model is the same:

> apc.fit( lu, dr.extr="N", ref.p=1990, ref.c=1930, pr=T )$Drift

[1] "ML of APC-model Poisson with log(Y) offset : ( ACP ):\n"
Model Mod. df. Mod. dev. Test df. Test dev. Pr(>Chi) Test dev/df

1 Age 215 15568.2387 NA NA NA NA
2 Age-drift 214 6965.0731 1 8603.1656 0.000000e+00 8603.1656
3 Age-Cohort 211 1152.5297 3 5812.5433 0.000000e+00 1937.5144
4 Age-Period-Cohort 208 549.3752 3 603.1545 2.087058e-130 201.0515
5 Age-Period 211 3211.4282 3 2662.0530 0.000000e+00 887.3510
6 Age-drift 214 6965.0731 3 3753.6448 0.000000e+00 1251.2149

H0
1
2 zero drift
3 Coh eff|dr.
4 Per eff|Coh
5 Coh eff|Per
6 Per eff|dr.

exp(Est.) 2.5% 97.5%
APC (1-weights) 1.032266 1.031493 1.033039
A-d 1.023478 1.022963 1.023994
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> apc.fit( lx, dr.extr="N", ref.p=1990, ref.c=1930, pr=T )$Drift

[1] "ML of APC-model Poisson with log(Y) offset : ( ACP ):\n"
Model Mod. df. Mod. dev. Test df. Test dev. Pr(>Chi) Test dev/df

1 Age 285 46148.16 NA NA NA NA
2 Age-drift 284 37544.99 1 8603.1656 0.000000e+00 8603.1656
3 Age-Cohort 281 31732.45 3 5812.5433 0.000000e+00 1937.5144
4 Age-Period-Cohort 278 31129.30 3 603.1545 2.087058e-130 201.0515
5 Age-Period 281 33791.35 3 2662.0530 0.000000e+00 887.3510
6 Age-drift 284 37544.99 3 3753.6448 0.000000e+00 1251.2149

H0
1
2 zero drift
3 Coh eff|dr.
4 Per eff|Coh
5 Coh eff|Per
6 Per eff|dr.

exp(Est.) 2.5% 97.5%
APC (1-weights) 1.027211 1.026466 1.027956
A-d 1.023478 1.022963 1.023994

We note that the estimates from the age-drift model (labeled A-d) and the likelihood-ratio
tests are the same, no matter the data lay-out; they test the exact same hypothesis based
on the same amount of information. The residual deviances should not be the same; they
are each comparing the fit of the model (which is the same in the two cases) with the model
that has one parameter per observational record (which is not the same in the two cases).

Then we extract the temporal trend using the standard inner product, as well as D and
Y as weights in the inner product:

> dx.1 <- apc.fit( lx, dr.extr="N", ref.p=1980, ref.c=1910, pr=F )$Drift
> dx.d <- apc.fit( lx, dr.extr="D", ref.p=1980, ref.c=1910, pr=F )$Drift
> dx.y <- apc.fit( lx, dr.extr="Y", ref.p=1980, ref.c=1910, pr=F )$Drift
> xxx <- (rbind( dx.1[1,,drop=F], dx.d[1,,drop=F], dx.y )-1)*100
> round( cbind( org, xxx ), 4 )

exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5%
APC (1-weights) 3.2266 3.1493 3.3039 2.7211 2.6466 2.7956
APC (D-weights) 1.9640 1.9040 2.0240 1.9640 1.9040 2.0240
APC (Y-weights) 2.0291 1.9472 2.1110 2.0291 1.9473 2.1110
A-d 2.3478 2.2963 2.3994 2.3478 2.2963 2.3994

The three leftmost columns here are the estimates using the original dataset; the three
rightmost columns are from the uninformatively expanded dataset.

We see that the trend using the Ds or the Y s as weights for the inner product to define
orthogonality is invariant under uninformative data-change, whereas using the standard
inner product is not. In this lung cancer example, using the standard inner product leads
to quite a substantial dependence on the data layout, even if the fitted model is precisely
the same for the two different ways of entering data.

7 Discussion

The firm belief in the uniqueness of the temporal trend from an APC model comes from
the formally correct use of the word “identifiable”, which in statistical terminology refers to
a particular parametrization, or more specifically a particular set of columns in the model
matrix spanning the model space. Identifiability is not a property of the model (the space
spanned by the model matrix), but of the particular parametrization. In this sense
Holford’s proposal with orthogonal projection w.r.t. the standard inner product is based on
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identifiability in a different parametrization from the one(s) I propose by using another
inner product to define orthogonality. In my proposal here, the trend is also identifiable in
the usual statistical sense (by the exact same argument that Holford uses), but the
parametrization I propose is different from the one proposed by Holford, and moreover
offers invariance under uninformative changes in data lay-out.

8 Conclusion

It is not possible to specify a unique temporal trend in an APC model, as it depends on the
inner product chosen to define orthogonality. It is however advisable to use either the
number of events and/or the risk time (exposure, risk time) as weights of the inner product
when defining orthogonality due to the invariance property of these. An argument can be
made for either; the number of events is the information about the log-rate, whereas the
amount of follow-up is the information about the square root of the rate — see the
technical sections (A2).
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Figure 1: Three different parametrizations of an APC-model for male lung cancer incidence
in Denmark. Black is the traditional projection, red is using no. of deaths as weights and
blue is the one using the person-years as weights in the inner product defining orthogonality.
All three sets of curves multiply together to the same fitted values. The cohort curves (dotted
lines) are 0 on average and has 0 slope on average, but with respect to different inner products
— they differ only by affine terms. The period curves have average slopes equal to the
extracted drifts but with respect to different inner products; they are constrained to be 1 at
1980 and so differ by terms proportional to (p− 1980).
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A1 Examples

In the Epi package are functions for projections using different inner products
(projection.ip, detrend) as well as an apc.fit function that fits an APC model (and all
the submodels) and returns (among other things) the extracted trend, using a specified
inner product. So far the only possible choices of relevance here are dr.extr="y" or
dr.extr="d" and the traditional dr.extr="1", with obvious meaning. Any inner product
induced by a diagnonal matrix can be accommodated by supplying the diagonal entries as
the argument dr.extr.

The models fitted by default by apc.fit are using natural splines (restricted cubic
splines) to model the effects of age, period and cohort, placing the knots (5 per default) so
that the number of events is the same between each pair of knots, and half of this number
outside of each of the boundary knots.

A1.1 Lung cancer in Denmark: factor model

Here we use the same data, but initially aggregate to 5×5 age by period sets (so-called
A-sets in the Lexis diagram):

> library(Epi)
> data( lungDK )
> names( lu <- aggregate( lungDK[,c("D","Y")],
+ lungDK[,c("A5","P5")],
+ FUN=sum ) )

[1] "A5" "P5" "D" "Y"

> names( lu )[1:2] <- c("A","P")
> with( lu, table(A,P) )

P
A 1943 1948 1953 1958 1963 1968 1973 1978 1983 1988 1993
40 1 1 1 1 1 1 1 1 1 1 1
45 1 1 1 1 1 1 1 1 1 1 1
50 1 1 1 1 1 1 1 1 1 1 1
55 1 1 1 1 1 1 1 1 1 1 1
60 1 1 1 1 1 1 1 1 1 1 1
65 1 1 1 1 1 1 1 1 1 1 1
70 1 1 1 1 1 1 1 1 1 1 1
75 1 1 1 1 1 1 1 1 1 1 1
80 1 1 1 1 1 1 1 1 1 1 1
85 1 1 1 1 1 1 1 1 1 1 1

We fit the model (using the exchangeable factor parametrization for the three effects) and
extract the trend using different inner products, and display this as annual percent
changes:

> dr.1 <- apc.fit( lu, dr.extr="1", model="factor", pr=F )$Drift

No reference cohort given; reference cohort for age-effects is chosen as
the median date of birth for persons with event: 1913 .

> dr.d <- apc.fit( lu, dr.extr="d", model="factor", pr=F )$Drift

No reference cohort given; reference cohort for age-effects is chosen as
the median date of birth for persons with event: 1913 .

> dr.y <- apc.fit( lu, dr.extr="y", model="factor", pr=F )$Drift

No reference cohort given; reference cohort for age-effects is chosen as
the median date of birth for persons with event: 1913 .

> round( org <- (rbind( dr.1[1,,drop=F], dr.d[1,,drop=F], dr.y )-1)*100, 2 )
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exp(Est.) 2.5% 97.5%
APC (1-weights) 3.28 3.15 3.40
APC (D-weights) 1.99 1.93 2.05
APC (Y-weights) 2.13 2.04 2.23
A-d 2.36 2.31 2.41

Again we see that the standard inner product produces a substantially different trend
estimate from the ones based on D or Y . And that these are on either side of the estimate
of the drift from the age-drift model [3, 4].

Now we duplicate some of the records so we have duplicate occurrences of some
combinations of age and period (and hence cohort), but we redistribute events and risk
time between the duplicates:

> set.seed( 1952 )
> wh <- (1:nrow(lu))[lu$P>1980]
> ld <- lu[wh,]
> wd <- runif( nrow(ld) )
> wy <- runif( nrow(ld) )
> l1 <- transform( ld, D=round(wd*D), Y=wy*Y )
> l2 <- merge( l1, ld, by=c("A","P") )
> l2 <- transform( l2, D=D.y-D.x, Y=Y.y-Y.x )[,c("A","P","D","Y")]
> # check that D and Y is the same for all combinations of A and P:
> range( xtabs( cbind( D,Y ) ~ A + P, data = ld ) -
+ xtabs( cbind( D,Y ) ~ A + P, data = l1 ) -
+ xtabs( cbind( D,Y ) ~ A + P, data = l2 ) )

[1] 0 0

> lx <- rbind( lu[-wh,], l1, l2 )

Now we can check that we get the same fitted parameters in the sense that the likelihood
ratio tests are the same for the two different lay-outs of data, and that the drift parameter
from the Age-drift model is the same:

> apc.fit( lu, dr.extr="1", model="factor", pr=T )$Drift

[1] "ML of APC-model Poisson with log(Y) offset : ( ACP ):\n"
Model Mod. df. Mod. dev. Test df. Test dev. Pr(>Chi) Test dev/df

1 Age 100 15103.0013 NA NA NA NA
2 Age-drift 99 6417.3811 1 8685.6202 0.000000e+00 8685.62024
3 Age-Cohort 81 829.6293 18 5587.7518 0.000000e+00 310.43065
4 Age-Period-Cohort 72 208.5476 9 621.0817 6.244637e-128 69.00907
5 Age-Period 90 2723.4660 18 2514.9184 0.000000e+00 139.71769
6 Age-drift 99 6417.3811 9 3693.9151 0.000000e+00 410.43501

H0
1
2 zero drift
3 Coh eff|dr.
4 Per eff|Coh
5 Coh eff|Per
6 Per eff|dr.
No reference cohort given; reference cohort for age-effects is chosen as
the median date of birth for persons with event: 1913 .

exp(Est.) 2.5% 97.5%
APC (1-weights) 1.032769 1.031537 1.034003
A-d 1.023580 1.023065 1.024096

> apc.fit( lx, dr.extr="1", model="factor", pr=T )$Drift

[1] "ML of APC-model Poisson with log(Y) offset : ( ACP ):\n"
Model Mod. df. Mod. dev. Test df. Test dev. Pr(>Chi) Test dev/df

1 Age 130 51089.37 NA NA NA NA
2 Age-drift 129 42403.75 1 8685.6202 0.000000e+00 8685.62024
3 Age-Cohort 111 36816.00 18 5587.7518 0.000000e+00 310.43065
4 Age-Period-Cohort 102 36194.92 9 621.0817 6.244637e-128 69.00907
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5 Age-Period 120 38709.84 18 2514.9184 0.000000e+00 139.71769
6 Age-drift 129 42403.75 9 3693.9151 0.000000e+00 410.43501

H0
1
2 zero drift
3 Coh eff|dr.
4 Per eff|Coh
5 Coh eff|Per
6 Per eff|dr.
No reference cohort given; reference cohort for age-effects is chosen as
the median date of birth for persons with event: 1913 .

exp(Est.) 2.5% 97.5%
APC (1-weights) 1.028019 1.026911 1.029128
A-d 1.023580 1.023065 1.024096

We note that the estimates from the age-drift model (labeled A-d) and likelihood-ratio tests
are the same, no matter the data lay-out; they test the exact same hypothesis based on the
same amount of information. The residual deviances should not be the same; they are each
comparing the fit of the model (which is the same in the two cases) with the model that
has one parameter per observational record (which is not the same in the two cases).

Then we extract the temporal trend using the standard inner product, as well as D and
Y as weights in the inner product:

> dx.1 <- apc.fit( lx, dr.extr="1", model="factor", pr=F )$Drift

No reference cohort given; reference cohort for age-effects is chosen as
the median date of birth for persons with event: 1913 .

> dx.d <- apc.fit( lx, dr.extr="d", model="factor", pr=F )$Drift

No reference cohort given; reference cohort for age-effects is chosen as
the median date of birth for persons with event: 1913 .

> dx.y <- apc.fit( lx, dr.extr="y", model="factor", pr=F )$Drift

No reference cohort given; reference cohort for age-effects is chosen as
the median date of birth for persons with event: 1913 .

> xxx <- (rbind( dx.1[1,,drop=F], dx.d[1,,drop=F], dx.y )-1)*100
> round( cbind( org, xxx ), 4 )

exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5%
APC (1-weights) 3.2769 3.1537 3.4003 2.8019 2.6911 2.9128
APC (D-weights) 1.9870 1.9272 2.0468 1.9870 1.9272 2.0468
APC (Y-weights) 2.1348 2.0444 2.2253 2.1348 2.0444 2.2253
A-d 2.3580 2.3065 2.4096 2.3580 2.3065 2.4096

So we see that using the Ds or the Y s as weights for the inner product to define
orthogonality is invariant under data-change, whereas using the standard inner product is
not. In this lung cancer example, using the standard inner product leads to quite a
substantial dependence on the data layout, even if the fitted model is precisely the same for
the two different ways of entering data.

A1.2 Testis cancer in Denmark

In this example we load the Danish testis cancer data which is counts and risk time in
1-year age and period classes (so-called A-sets of the Lexis diagram), restrict the age-range
and analyze it by APC models using different ways of extracting the trend.
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> library( Epi )
> data( testisDK )
> # restrict to the clinically relevant age-range
> tr <- subset( testisDK, A>14 & A<65 )
> # code by midpoint of intervals
> tr$A <- tr$A + 0.5
> tr$P <- tr$P + 0.5
> head( tr )

A P D Y
16 15.5 1943.5 0 31188.00
17 16.5 1943.5 0 31654.33
18 17.5 1943.5 0 32084.33
19 18.5 1943.5 0 32681.67
20 19.5 1943.5 0 33005.67
21 20.5 1943.5 0 33302.67

We fit the model and extract the trend using different inner products, and display this as
annual percent changes:

> dr.1 <- apc.fit( tr, dr.extr="1", ref.p=1990, ref.c=1950, pr=F )$Drift
> dr.d <- apc.fit( tr, dr.extr="d", ref.p=1990, ref.c=1950, pr=F )$Drift
> dr.y <- apc.fit( tr, dr.extr="y", ref.p=1990, ref.c=1950, pr=F )$Drift
> round( org <- (rbind( dr.1[1,,drop=F], dr.d[1,,drop=F], dr.y )-1)*100, 2 )

exp(Est.) 2.5% 97.5%
APC (1-weights) 2.67 2.48 2.85
APC (D-weights) 2.61 2.45 2.77
APC (Y-weights) 2.67 2.50 2.84
A-d 2.55 2.40 2.71

Here we see much less difference between the extracted trends using the different
definitions of orthogonality.

Now we duplicate some of the records in the last years, but redistribute events and risk
time so the sum remains the same:

> set.seed( 1952 )
> wh <- (1:nrow(tr))[tr$P>1970] # which rows to duplicate
> td <- tr[wh,] # a copy of these
> wd <- runif( nrow(td) ) # fraction of events
> wy <- runif( nrow(td) ) # fraction of risk time
> t1 <- transform( td, D=round(wd*D), Y=wy*Y ) # events and risk time
> t2 <- merge( t1, td, by=c("A","P") ) # match with original
> t2 <- transform( t2, D=D.y-D.x, Y=Y.y-Y.x )[,c("A","P","D","Y")]
> # the complementary events and risk time
> # check we have the same no in td as in t1 and t2 together
> range( xtabs( cbind( D,Y ) ~ A + P, data = td )
+ -xtabs( cbind( D,Y ) ~ A + P, data = t1 )
+ -xtabs( cbind( D,Y ) ~ A + P, data = t2 ) )

[1] 0 0

> # replace with the duplcated records
> tx <- rbind( tr[-wh,], t1, t2 )

Now we can check that we got the same fit to data by comparing the old fit with results
based on a data set where a subset of records have been split in two:

> apc.fit( tr, dr.extr="1", ref.p=1990, ref.c=1950, pr=T )$Drift

[1] "ML of APC-model Poisson with log(Y) offset : ( ACP ):\n"
Model Mod. df. Mod. dev. Test df. Test dev. Pr(>Chi) Test dev/df

1 Age 2695 4235.078 NA NA NA NA
2 Age-drift 2694 3048.316 1 1186.76204 4.595058e-260 1186.762037
3 Age-Cohort 2691 3022.611 3 25.70531 1.099303e-05 8.568438
4 Age-Period-Cohort 2688 2964.336 3 58.27421 1.373608e-12 19.424738
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5 Age-Period 2691 3025.982 3 61.64591 2.615369e-13 20.548638
6 Age-drift 2694 3048.316 3 22.33361 5.559277e-05 7.444538

H0
1
2 zero drift
3 Coh eff|dr.
4 Per eff|Coh
5 Coh eff|Per
6 Per eff|dr.

exp(Est.) 2.5% 97.5%
APC (1-weights) 1.026677 1.024809 1.028548
A-d 1.025537 1.024020 1.027056

> apc.fit( tx, dr.extr="1", ref.p=1990, ref.c=1950, pr=T )$Drift

[1] "ML of APC-model Poisson with log(Y) offset : ( ACP ):\n"
Model Mod. df. Mod. dev. Test df. Test dev. Pr(>Chi) Test dev/df

1 Age 4045 10889.653 NA NA NA NA
2 Age-drift 4044 9702.891 1 1186.76204 4.595058e-260 1186.762037
3 Age-Cohort 4041 9677.186 3 25.70531 1.099303e-05 8.568438
4 Age-Period-Cohort 4038 9618.911 3 58.27421 1.373608e-12 19.424738
5 Age-Period 4041 9680.557 3 61.64591 2.615369e-13 20.548638
6 Age-drift 4044 9702.891 3 22.33361 5.559277e-05 7.444538

H0
1
2 zero drift
3 Coh eff|dr.
4 Per eff|Coh
5 Coh eff|Per
6 Per eff|dr.

exp(Est.) 2.5% 97.5%
APC (1-weights) 1.026321 1.024618 1.028026
A-d 1.025537 1.024020 1.027056

The printed results shows that the analyses based on the two different data sets give the
same models and tests, but not the same deviances and not the same extracted trend. Now
we fit the model again and extract the trend in different ways:

> dx.1 <- apc.fit( tx, dr.extr="1", ref.p=1990, ref.c=1950, pr=F )$Drift
> dx.d <- apc.fit( tx, dr.extr="d", ref.p=1990, ref.c=1950, pr=F )$Drift
> dx.y <- apc.fit( tx, dr.extr="y", ref.p=1990, ref.c=1950, pr=F )$Drift
> xxx <- (rbind( dx.1[1,,drop=F], dx.d[1,,drop=F], dx.y )-1)*100
> round( cbind( org, xxx ), 4 )

exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5%
APC (1-weights) 2.6677 2.4809 2.8548 2.6321 2.4618 2.8026
APC (D-weights) 2.6088 2.4523 2.7655 2.6088 2.4523 2.7655
APC (Y-weights) 2.6700 2.4970 2.8433 2.6700 2.4970 2.8433
A-d 2.5537 2.4020 2.7056 2.5537 2.4020 2.7056

So we see that using the Ds or the Y s as weights for the inner product to define
orthogonality is invariant under uninformative change in data layout, whereas using the
standard inner product is not; however in this example with much smaller effect than in
the lung cancer example.

A2 Information from the log-likelihood

The log-likelihood for a rate parameter λ in a constant rate model, based on observation of
D events during Y risk time is:

`(λ) = D log(λ)− λY
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and thus λ̂ = D/Y .
The observed information is minus the 2nd derivative of ` evaluated at λ̂. By that token

the information about any transformation of λ has a dimension which is the dimension of
the transformed parameter to the power of −2. So if we are looking for transformation of λ
with observed information D (dimensionless) we would look at log(λ), and if we are looking
for one with observed information Y (dimension: time) we would look at

√
λ (dimension:

time−1/2).
Specifically, the information about θ = log(λ) is as follows:

`(θ) = Dθ − exp(θ)Y

`′(θ) = D − exp(θ)Y

I(θ) = −`′′(θ)
∣∣∣
θ=θ̂

= exp(θ)Y
∣∣∣
θ=θ̂

= (D/Y )Y = D

. . . and the information about γ =
√
λ is as follows:

`(γ) = D log(γ2)− γ2Y
`′(γ) = 2Dγ/γ2 − 2γY = 2D/γ − 2γY

I(γ) = −`′′(γ)
∣∣∣
γ=γ̂

= D/γ2 + 2Y
∣∣∣
γ=γ̂

= D/(D/Y ) + 2Y = 3Y

Above we showed that in order to have invariance of trend extraction under uninformative
change in data layout, we need an inner product in the observation space which is
proportional to a linear combination of D and Y . Thus the weights that we can combine to
give inner products that render a trend extraction with this property are combinations of
the information about the log rate and the square root of the rate.

A3 Orthogonality and inner product

Two vectors x and y are said to be orthogonal if their inner product is 0:

x ⊥ y ⇔ 〈x|y〉 = 0

The standard inner product of two vectors in a finite-dimensional linear space is defined as
the bivariate scalar-valued function:

〈x|y〉 =
∑
i

xiyi

A general inner product is induced by a positive semi-definite matrix W , as:

〈x|y〉
W

= x′Wy ≥ 0, ∀x, y

where the inequality is the definition of semi-definite.
The most common choice of W is as a diagonal matrix with non-negative entries; if

W = diag(w1, . . . , wn), then:

〈x|y〉 =
∑
i

xiwiyi
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Orthogonality properties of an inner product are invariant under multiplication of the
diagonal elements by a positive constant.

The standard inner product is the one induced by the identity matrix, wi = 1, ∀i.
Formulae for projection w.r.t. a general inner product can be found in any treatise on

linear algebra, but are also briefly mentioned in [2] in connection with practical
implementation details of projection.ip in the Epi package.

A3.1 Table 1 of Holford’s paper[1]

Here is an R-representation of table 1:

> A <- rep(1:3,each=3)
> P <- rep(1:3,3)
> C <- P-A+3
> Ac <- rep(c(1,-2,1),each=3)
> Pc <- rep(c(1,-2,1),3)
> Cc <- cbind( Cc1=c(-2,-1, 2,-1,-2,-1, 2,-1,-2),
+ Cc2=c( 0,-2, 1, 2, 0,-2,-1, 2, 0),
+ Cc3=c( 6,-4, 1,-4, 6,-4, 1,-4, 6) )
> Al <- A-2
> Pl <- P-2
> Cl <- Pl-Al
> cbind( A,P,C,Ac,Pc,Cc,Al,Pl,Cl)

A P C Ac Pc Cc1 Cc2 Cc3 Al Pl Cl
[1,] 1 1 3 1 1 -2 0 6 -1 -1 0
[2,] 1 2 4 1 -2 -1 -2 -4 -1 0 1
[3,] 1 3 5 1 1 2 1 1 -1 1 2
[4,] 2 1 2 -2 1 -1 2 -4 0 -1 -1
[5,] 2 2 3 -2 -2 -2 0 6 0 0 0
[6,] 2 3 4 -2 1 -1 -2 -4 0 1 1
[7,] 3 1 1 1 1 2 -1 1 1 -1 -2
[8,] 3 2 2 1 -2 -1 2 -4 1 0 -1
[9,] 3 3 3 1 1 -2 0 6 1 1 0

This is the table 1 in the paper, but there is a typo in Cc — the 2nd column is not
orthogonal to Cl by the standard inner product:

> t(Cl) %*% Cc

Cc1 Cc2 Cc3
[1,] 0 -4 0

. . . the 8th element in Cc2 is 2, but it should be −2:

> Cc[8,2] <- -2
> t(Cl) %*% Cc

Cc1 Cc2 Cc3
[1,] 0 0 0

If we want the columns to be orthogonal to the intercept too we just subtract the means:

> cnt <- matrix(apply(Cc,2,mean),9,3,byrow=TRUE)
> matrix(1,1,9) %*% (Cc-cnt)

Cc1 Cc2 Cc3
[1,] -4.440892e-16 0 -3.552714e-15

> t(Cl) %*% (Cc-cnt)

Cc1 Cc2 Cc3
[1,] 0 0 0
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